Skip to main content
Log in

Facile one-pot synthesis of nano-zinc hydroxide by electro-dissolution of zinc as a sacrificial anode and the application for adsorption of Th4+, U4+, and Ce4+ from aqueous solution

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Facilely synthesized zinc hydroxide nanoparticles by electro-dissolution of zinc sacrificial anodes were investigated for the adsorption of thorium (Th4+), uranium (U4+) and cerium (Ce4+) from aqueous solution. Various operating parameters such as effect of pH, current density, temperature, electrode configuration, and electrode spacing on the adsorption efficiency of Th4+, U4+ and Ce4+ were studied. The results showed that the maximum removal efficiency was achieved for Th4+, U4+ and Ce4+ with zinc as anode and stainless steel as cathode at a current density of 0.2 A/dm2 and pH of 7.0. First- and second-order rate equations were applied to study the adsorption kinetics. The adsorption process follows second order kinetics model with good correlation. The Langmuir, Freundlich adsorption models were applied to describe the equilibrium isotherms and the isotherm constants were determined. The experimental adsorption data were fitted to the Langmuir adsorption model. Thermodynamic parameters such as free energy (Δ), enthalpy (Δ), and entropy changes (ΔS°) for the adsorption of Th4+, U4+ and Ce4+ were computed to predict the nature of adsorption process. Temperature studies showed that the adsorption was endothermic and spontaneous in nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. D. Rana, T. Matsuura, M.A. Kassim, A.F. Ismail, Desalination 321, 77 (2013)

    Article  CAS  Google Scholar 

  2. M. Saleem, M. Afzal, R. Qadeer, J. Hanif, J. Radloanal, Nuclear Chem. 172, 257 (1993)

    Article  CAS  Google Scholar 

  3. S. Shankar Dubey, B. Sreenivasa Rao, J. Hazard Mater. 186, 1028 (2011)

    Article  Google Scholar 

  4. Z. Xiaofei Zhang, W. Jun, L. Rumin, D. Qihui, L. Lianhe, N. J. Chem. 37, 3914 (2013)

    Article  Google Scholar 

  5. M. Kalina, W.N. Wheelerb, G. Meinrath, J. Environ. Radioact. 78, 151 (2005)

    Article  Google Scholar 

  6. M.A. Mohsen, F.H. Mohammed, J. Dispers. Sci. Technol. 34, 182 (2013)

    Article  Google Scholar 

  7. H. Fatima, N. Djamel, A. Samira, B. Mahfoud, Desalin. Water Treat. 51, 583 (2013)

    Article  Google Scholar 

  8. A. Kilincarslan Kaygun, S. Akyil, J. Hazard Mater. 147, 357 (2007)

    Article  Google Scholar 

  9. N. Pan, J. Deng, D. Guan, Y. Jin, C. Xia, Appl. Surf. Sci. 287, 478 (2013)

    Article  CAS  Google Scholar 

  10. D. Xu, C. Chen, X. Tan, J. Hu, X. Wang, Appl. Geochem. 22, 2892 (2007)

    Article  CAS  Google Scholar 

  11. C.L. Chen, X.K. Wang, Appl. Geochem. 22, 436 (2007)

    Article  CAS  Google Scholar 

  12. J. Li, Y. Zhang, Proced. Environ. Sci. 13, 1609 (2012)

    Article  CAS  Google Scholar 

  13. L.W. Yu, S. Li-Juan, Z. Lu, G. Bo-Long, C. Su-Wen, W. Wang-Suo, Dalton Trans. 43, 3739 (2014)

    Article  Google Scholar 

  14. E. Onder, A.S. Koparal, U.B. Ogutveren, Sep. Purif. Technol. 52, 527 (2007)

    Article  Google Scholar 

  15. D.W. Miwa, G.R.P. Malpass, S.A.S. Machado, A.J. Motheo, Water Res. 40, 3281 (2006)

    Article  CAS  Google Scholar 

  16. E.A. Vik, D.A. Carlson, A.S. Eikum, E.T. Gjessing, Water Res. 18, 1355 (1984)

    Article  CAS  Google Scholar 

  17. S. Vasudevan, J. Lakshmi, J. Jayaraj, G. Sozhan, J. Hazard Mater. 164, 1480 (2009)

    Article  CAS  Google Scholar 

  18. S. Vasudevan, S. Margrat Sheela, J. Lakshmi, G. Sozhan, J. Chem. Technol. Biotech. 85, 926 (2010)

    Article  CAS  Google Scholar 

  19. J. Vanmuylder, M. Pourbaix, in Atlas of Electrochemical Equilibria in Aquous Solutions: Zinc, ed. by J. Vanmuylder, M. Pourbaix (Pergamon, New York, 1966)

    Google Scholar 

  20. P.K. Singh, B. Sushmita, A.L. Srivastava, Y.C. Sharma, RSC Adv. 5, 35365 (2015)

    Article  CAS  Google Scholar 

  21. Y.S. Ho, G. McKay, Adsorpt. Sci. Technol. 16, 243 (1998)

    CAS  Google Scholar 

  22. H.M.F. Freundlich, J. Phys. Chem. A 57, 385 (1906)

    CAS  Google Scholar 

  23. P. Sathishkumar, M. Arulkumar, V. Ashokkumar, A. Rahim Mohd Yusoff, K. Murugesan, T. Palvannan, Z. Salam, F. Nasir Anic, T. Hadibarata, RSC Adv. 5, 30950 (2015)

    Article  CAS  Google Scholar 

  24. M. Alkan, B. Kalay, M. Dogan, J. Hazard Mater. 153, 867 (2008)

    Article  CAS  Google Scholar 

  25. A.K. Golder, A.N. Samantha, S. Ray, Sep. Purif. Technol. 52, 102 (2006)

    Article  CAS  Google Scholar 

  26. M.J. Hernandez-Moreno, M.A. Ulibarri, J.L. Renon, C.J. Serna, Phys. Chem. Miner. 12, 34 (1985)

    CAS  Google Scholar 

  27. K.Y. Foo, B.H. Hameed, Chem. Eng. J. 87, 53 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to express their gratitude to Dr. Vijayamohanan K. Pillai, Director, CSIR-Central Electrochemical Research Institute, Karaikudi to publish this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subramanyan Vasudevan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamaraj, R., Vasudevan, S. Facile one-pot synthesis of nano-zinc hydroxide by electro-dissolution of zinc as a sacrificial anode and the application for adsorption of Th4+, U4+, and Ce4+ from aqueous solution. Res Chem Intermed 42, 4077–4095 (2016). https://doi.org/10.1007/s11164-015-2259-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-015-2259-z

Keywords

Navigation