Skip to main content
Log in

Removal of Th(IV), Ni(II)and Fe(II) from aqueous solutions by a novel PAN–TiO2 nanofiber adsorbent modified with aminopropyltriethoxysilane

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

A novel polyacrylonitrile (PAN)–titanium oxide (TiO2) nanofiber adsorbent functionalized with aminopropyltriethoxysilane (APTES) was fabricated by electrospinning. The adsorbent was characterized by SEM, FTIR, TEG and BET analyses. The pore diameter and surface area of the adsorbent were 3.1 nm and 10.8 m2 g−1, respectively. The effects of several variables, such as TiO2 and amine contents, pH, interaction time, initial concentration of metal ions, ionic strength and temperature, were studied in batch experiments. The kinetic data were analyzed by pseudo-first-order, pseudo-second-order and double-exponential models. Two isotherm models, namely Freundlich and Langmuir, were used for analysis of equilibrium data. The maximum adsorption capacities of Th(IV), Ni(II) and Fe(II) by Langmuir isotherm were found to be 250, 147 and 80 mg g−1 at 45 °C with pH of 5, 6 and 5, respectively, and greater adsorption of Th(IV) could be justified with the concept of covalent index and free energy of hydration. Calculation of ΔG°, ΔH° and ΔS° demonstrated that the nature of the Th(IV), Ni(II) and Fe(II) metal ions adsorption onto the PAN–TiO2–APTES nanofiber was endothermic and favorable at a higher temperature. The negative values of ΔG° for Th(IV) showed that the adsorption process was spontaneous, but these values for Ni(II)and Fe(II) were positive and so the adsorption process was unspontaneous. Increasing of ionic strength improved the adsorption of Ni(II) and Fe(II) on nanofiber adsorbent but decreased the adsorption capacity of Th(IV). The adsorption capacity was reduced slightly after six cycles of adsorption–desorption, so the nanofiber adsorbent could be used on an industrial scale. The inhibitory effect of Ni(II) and Fe(II) on the adsorption of Th(IV) was increased with an increase in the concentration of inhibitor metal ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M.A. Barakat, New trends in removing heavy metals from industrial wastewater. Arab. J. Chem. 4, 361–377 (2011)

    Article  CAS  Google Scholar 

  2. M. Metaxas, Thorium removal by different adsorbents. J. Hazard. Mater. 97, 71–82 (2003)

    Article  CAS  Google Scholar 

  3. Y.C. Sharma, Economic treatment of cadmium (II)-rich hazardous waste by indigenous material. J. Colloid Interface Sci. 173, 66–70 (1995)

    Article  CAS  Google Scholar 

  4. M. Kilic, C. Kirbiyik, Ö. Cepeliogullar, A.E. Pütün, Adsorption of heavy metal ions from aqueous solutions by bio-char, a by-product of pyrolysis. Appl. Surf. Sci. 283, 856–862 (2013)

    Article  CAS  Google Scholar 

  5. S. Yari, S. Abbasizadeh, S.E. Mousavi, M.S. Moghaddam, A.Z. Moghaddam, Adsorption of Pb(II) and Cu(II) ions from aqueous solution by an electrospun CeO2 nanofiber adsorbent functionalized with mercapto groups. Process Saf. Environ. Prot. 94, 159–171 (2015)

    Article  CAS  Google Scholar 

  6. M.R. Moghaddam, S. Fatemi, A. Keshtkar, Adsorption of lead (Pb2+) and uranium cations by brown algae; experimental and thermodynamic modeling. Chem. Eng. J. 231, 294–303 (2013)

    Article  CAS  Google Scholar 

  7. R. Kumar, A.M. Isloor, Preparation and evaluation of heavy metal rejection properties of polysulfone/chitosan, polysulfone/N-succinyl chitosan and polysulfone/N-propylphosphonyl chitosan blend ultrafiltration membranes. Desalination 350, 102–108 (2014)

    Article  CAS  Google Scholar 

  8. W.P. Zhu, S.P. Sun, Dual-layer polybenzimidazole/polyethersulfone (PBI/PES) nanofiltration (NF) hollow fiber membranes for heavy metals removal from wastewater. J. Membr. Sci. 456, 117–127 (2014)

    Article  CAS  Google Scholar 

  9. S.Y. Huang, C.S. Fan, C. Hou, Electro-enhanced removal of copper ions from aqueous solutions by capacitive deionization. J. Hazard. Mater. 278, 8–15 (2014)

    Article  CAS  Google Scholar 

  10. A.M. Shoushtari, M. Zargaran, M. Abdouss, Preparation and characterization of high efficiency ion-exchange cross linked acrylic fibers. J. Appl. Polym. Sci. 101, 2202–2209 (2006)

    Article  CAS  Google Scholar 

  11. A.B. Resterna, R. Cierpiszewski, K. Prochaska, Kinetic and equilibrium studies of the removal of cadmium ions from acidic chloride solutions by hydrophobic pyridinecarboxamide extractants. J. Hazard. Mater. 179, 828–833 (2010)

    Article  Google Scholar 

  12. M. Visa, C. Bogatu, A. Duta, Simultaneous adsorption of dyes and heavy metals from multicomponent solutions using fly ash. Appl. Surf. Sci. 256, 5486–5491 (2010)

    Article  CAS  Google Scholar 

  13. D. Humelnicu, L. Bulgariu, M. Macoveanu, On the retention of uranyl and thorium ions from radioactive solution on peat moss. J. Hazard. Mater. 174, 782–787 (2010)

    Article  CAS  Google Scholar 

  14. A. Dastbaz, A. Keshtkar, Adsorption of Th4+, U6+, Cd2+ and Ni2+ from aqueous solution by a novel modified polyacrylonitrile composite nanofiber adsorbent prepared by electrospinning. Appl. Surf. Sci. 293, 336–344 (2014)

    Article  CAS  Google Scholar 

  15. D. Türkmen, E. Yılmaz, N. Ozturk, V. Akgol, A. Denizli, Poly(hydroxyethyl methacrylate) nanobeads containing imidazole groups for removal of Cu(II) ions. Mater. Sci. Eng. C 29, 2072–2078 (2009)

    Article  Google Scholar 

  16. X. Liu, Q. Hu, Z. Fang, X. Zhang, B. Zhang, Magnetic chitosan nanocomposites: a useful recyclable tool for heavy metal ion removal. Langmuir 25, 3–8 (2009)

    Article  CAS  Google Scholar 

  17. K. Saeed, S. Haidera, T.J. Oh, S.Y. Park, Preparation of amidoxime-modified polyacrylonitrile (PAN-oxime) nano-fibers and their applications to metal ions adsorption. J. Membr. Sci. 322, 400–405 (2008)

    Article  CAS  Google Scholar 

  18. S. Abbasizadeh, A.R. Keshtkar, M.A. Mousavian, Preparation of a novel electrospun polyvinyl alcohol/titanium oxide nanofiber adsorbent modified with mercapto groups for uranium(VI) and thorium(IV) removal from aqueous solution. Chem. Eng. J. 220, 161–171 (2013)

    Article  CAS  Google Scholar 

  19. H. Reneker, A.L. Yarin, Electrospinning jets and polymer nanofibers. Polymer 49, 2387–2425 (2008)

    Article  CAS  Google Scholar 

  20. A.K. Gupta, D.K. Paliwal, P. Bajaj, Polyacrilonitryle structure. J. Appl. Polym. Sci. 70, 2703–2709 (1998)

    Article  CAS  Google Scholar 

  21. M. Hua, S. Zhang, B. Pan, W. Zhang, L. Lv, Q. Zhang, Heavy metal removal from water/wastewater by nanosized metal oxides: a review. J. Hazard. Mater. 211–212, 317–331 (2012)

    Article  Google Scholar 

  22. X. Guan, J. Du, X. Meng, Y. Sun, B. Sun, Q. Hu, Application of titanium dioxide in arsenic removal from water: a review. J. Hazard. Mater. 215–216, 1–16 (2012)

    Article  Google Scholar 

  23. X. Qu, P.J.J. Alvarez, Q. Li, Applications of nanotechnology in water and wastewater treatment. Water Res. 47, 3931–3946 (2013)

    Article  CAS  Google Scholar 

  24. X. Zhao, L. Lv, B. Pan, W. Zhang, S. Zhang, Q. Zhang, Polymer-supported nanocomposites for environmental application: a review. Chem. Eng. J. 170, 381–394 (2011)

    Article  CAS  Google Scholar 

  25. A.R. Ladhea, P. Frailiea, D. Huab, M. Darsillob, D. Bhattacharyya, Thiol functionalized silica–mixed matrix membranes for silver capture from aqueous solutions: experimental results and modeling. J. Membr. Sci. 326, 460–471 (2009)

    Article  Google Scholar 

  26. G. Socrates, The theory of vibrational spectroscopy and its application to polymeric materials. Mater. Des. 3, 646–647 (1982)

    Article  Google Scholar 

  27. S. Deng, R. Bai, J.P. Chen, Aminated polyacrylonitrile fibers for lead and copper removal. Langmuir 19, 5058–5064 (2003)

    Article  CAS  Google Scholar 

  28. S. Mallakpour, A. Barat, Efficient preparation of hybrid nanocomposite coatings based on poly(vinyl alcohol) and silane coupling agent modified TiO2 nanoparticles. Prog. Org. Coat. 71, 391–398 (2011)

    Article  CAS  Google Scholar 

  29. L. Ji, X. Zhang, Ultrafine polyacrylonitrile/silica composite fibers via electrospinning. J. Mater. Lett. 62, 2161–2164 (2008)

    Article  Google Scholar 

  30. C. Xiong, C. Yao, L. Wang, J. Ke, Adsorption behavior of Cd(II) from aqueous solutions onto geltype weak acid resin. Hydrometallurgy 98, 318–324 (2009)

    Article  CAS  Google Scholar 

  31. M. Irani, A. Keshtkar, M.A. Mousavian, Removal of cadmium from aqueous solution using mesoporous PVA/TEOS/APTES composite nanofiber prepared by sol–gel/electrospinning. Chem. Eng. J. 200–202, 192–201 (2012)

    Article  Google Scholar 

  32. F. Rashidi, R.S. Sarabi, Z. Ghasemi, A. Seif, Kinetic, equilibrium and thermodynamic studies for the removal of lead(II) and copper(II) ions from aqueous solutions by nanocrystalline TiO2. Superlattices Microstruct. 48, 577–591 (2010)

    Article  CAS  Google Scholar 

  33. N. Chiron, R. Guilet, E. Deydier, Adsorption of Cu(II) and Pb(II) onto a grafted silica, isotherms and kinetic models. Water Res. 37, 3079–3086 (2003)

    Article  CAS  Google Scholar 

  34. K.T. Noa, Description of hydration free energy density as a function of molecular physical properties. Biophys. Chem. 78, 127–145 (2005)

    Article  Google Scholar 

  35. A. Zayed, M. Badruddozaa, Fe3O4/cyclodextrin polymer nanocomposites for selective heavy metals removal from industrial wastewater. Carbohydr. Polym. 91, 322–332 (2013)

    Article  Google Scholar 

  36. L.M. Zhou, Y.P. Wang, Z.R. Liu, Q.W. Huang, Characteristics of equilibrium, kinetics studies for adsorption of Hg(II), Cu(II), and Ni(II) ions by thiourea-modified magnetic chitosan microspheres. J. Hazard. Mater. 161, 995–1002 (2009)

    Article  CAS  Google Scholar 

  37. A. Taha, Y. Wu, H. Wang, F. Li, Preparation and application of functionalized cellulose acetate/silica composite nanofibrous membrane via electrospinning for Cr(VI) ion removal from aqueous solution. J. Environ. Manag. 112, 10–16 (2012)

    Article  CAS  Google Scholar 

  38. F.A. Dawodu, K.G. Akpomie, Simultaneous adsorption of Ni(II) and Mn(II) ions from aqueous solution onto a Nigerian kaolinite clay. J. Mater. Res. Technol. 3, 129–141 (2014)

    Article  CAS  Google Scholar 

  39. T. Jong, D.L. Parry, Adsorption of Pb(II), Cu(II), Cd(II), Zn(II), Ni(II), Fe(II), and As(V) on bacterially produced metal sulfides. J. Colloid Interface Sci. 275, 61–71 (2004)

    Article  CAS  Google Scholar 

  40. S. Abbasizadeh, A.R. Keshtkar, M.A. Mousavian, Sorption of heavy metal ions from aqueous solution by a novel cast PVA/TiO2 nanohybrid adsorbent functionalized with amine groups. J. Ind. Eng. Chem. 20, 1656–1664 (2014)

    Article  CAS  Google Scholar 

  41. A. Kamari, S.N.M. Yusoff, F. Abdullah, W.P. Putra, Biosorptive removal of Cu(II), Ni(II) and Pb(II) ions from aqueous solutions using coconut dregs residue: adsorption and characterisation studies. J. Environ. Chem. Eng. 2, 1912–1919 (2014)

    Article  CAS  Google Scholar 

  42. R. Akkaya, Removal of radioactive elements from aqueous solutions by adsorption onto polyacrylamide–expanded perlite: equilibrium, kinetic, and thermodynamic study. Desalination 321, 3–8 (2013)

    Article  CAS  Google Scholar 

  43. M.K. Nazal, M.A. Albayyari, F.I. Khalili, Effect of high ionic strength on the extraction of uranium(VI) ions. J. Saudi Chem. Soc. 18, 59–67 (2014)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Reza Keshtkar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokhtari, M., Keshtkar, A.R. Removal of Th(IV), Ni(II)and Fe(II) from aqueous solutions by a novel PAN–TiO2 nanofiber adsorbent modified with aminopropyltriethoxysilane. Res Chem Intermed 42, 4055–4076 (2016). https://doi.org/10.1007/s11164-015-2258-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-015-2258-0

Keywords

Navigation