Research on Chemical Intermediates

, Volume 42, Issue 4, pp 3743–3761

Ab initio studies of optoelectronic properties of fluorine-substituted ferrocene

Article

Abstract

Structural and optoelectronic properties of ferrocene and some derivatives (Fe C10X10, X = H, F) have been investigated by density functional theory. The full potential linearized augmented plane wave including generalized gradient approximation was used in this study. Since the ferrocene family has appealing photochemical and electrochemical properties, they have been extensively used in electronic and photonic industries. The current study accomplishes the electron density, density of states, and optical calculations. We have found that the optoelectronic properties of ferrocene change under substitution of hydrogen with fluorine. Band gaps of 2.72 and 0.92 eV were obtained for FeC10H10 and FeC10F10, respectively. The band gap was obviously reduced for the full fluorine-substituted ferrocene compared with the unsubstituted one, which exhibited an increase in the charge transfer properties. Results of the optical calculations also confirm these findings.

Keywords

Ab initio calculations Optoelectronic properties Ferrocene Fluorine substitution 

References

  1. 1.
    A. Federman Neto, A.C. Pelegrino, V.A. Darin, Trends Organomet. Chem. 4, 147 (2002)Google Scholar
  2. 2.
    P.L. Pauson, J. Organomet. Chem. 637, 3–6 (2001)CrossRefGoogle Scholar
  3. 3.
    A. Nakamura, T. Ohshima, K. Mashima, J. Organomet. Chem. 690, 4373 (2005)CrossRefGoogle Scholar
  4. 4.
    P. Stepnicka, Ferrocenes: Ligands, Materials and Biomolecules (Wiley, Hoboken, 2008)Google Scholar
  5. 5.
    J.D. Qiu, M. Xiong, R.-P. Liang, H.-P. Peng, F. Liu, Biosens. Bioelectron. 24, 2649 (2009)CrossRefGoogle Scholar
  6. 6.
    S. Park, Electrochemical Evaluation of TCO Modifications Using Substituted Ferrocenes (The University Of Arizona, Tucson, 2012)Google Scholar
  7. 7.
    C. Paquet, P.W. Cyr, E. Kumacheva, I. Manners, Chem. Mater. 16, 5205 (2004)CrossRefGoogle Scholar
  8. 8.
    T.P. Gryaznova, S.A. Katsyuba, V.A. Milyukov, O.G. Sinyashin, J. Organomet. Chem. 695, 2586 (2010)CrossRefGoogle Scholar
  9. 9.
    B. Fábián, A. Csámpai, T.Z. Nagy, M. Czugler, P. Sohár, J. Organomet. Chem. 694, 3732 (2009)CrossRefGoogle Scholar
  10. 10.
    J.T. Chantson, M. Vittoria Vera Falzacappa, S. Crovella, N. Metzler-Nolte, Chem. Med. Chem. 1, 1268 (2006)CrossRefGoogle Scholar
  11. 11.
    G. Gasser, I. Ott, N. Metzler-Nolte, J. Med. Chem. 54, 3 (2010)CrossRefGoogle Scholar
  12. 12.
    M.F. Fouda, M.M. Abd-Elzaher, R.A. Abdelsamaia, A.A. Labib, Appl. Organomet. Chem. 21, 613 (2007)CrossRefGoogle Scholar
  13. 13.
    I. Willner, E. Katz, Angew. Chem. Int. Ed. 39, 1180 (2000)CrossRefGoogle Scholar
  14. 14.
    R.H. Crabtree, D. Mingos, T. Hiyama, Comprehensive Organometallic Chemistry III (Elsevier, Oxford, 2007)Google Scholar
  15. 15.
    A.S. Romanov, J.M. Mulroy, V.N. Khrustalev, M.Y. Antipin, T.V. Timofeeva, Acta Cryst. C Cryst. Struct. Commun. 65, 426 (2009)CrossRefGoogle Scholar
  16. 16.
    P.S. Liyanage, R.M. de Silva, K. de Silva, J. Mol. Struct. (Theochem) 639, 195 (2003)CrossRefGoogle Scholar
  17. 17.
    R. Nagarale, J.M. Lee, W. Shin, Electrochim. Acta 54, 6508 (2009)CrossRefGoogle Scholar
  18. 18.
    R. Jawaria, M. Hussain, Z. Shafiq, H.B. Ahmad, M.N. Tahir, H.A. Shad, M.M. Naseer, Cryst. Eng. Commun. 17, 2553 (2015)CrossRefGoogle Scholar
  19. 19.
    H. Pervez, M. Ahmad, T.B. Hadda, L. Toupet, M.M. Naseer, J. Mol. Struct. 1098, 124 (2015)CrossRefGoogle Scholar
  20. 20.
    A. Abbas, H. Gokce, S. Bahceli, M.M. Naseer, J. Mol. Struct. 1075, 352 (2014)CrossRefGoogle Scholar
  21. 21.
    O. Dereli, S. Bahceli, A. Abbas, M.M. Naseer, Monatsh. Chem. 146, 1473 (2015)CrossRefGoogle Scholar
  22. 22.
    J.D. Dunitz, Acta Cryst. B Struct. Sci. 51, 619 (1995)CrossRefGoogle Scholar
  23. 23.
    S. Coriani, A. Haaland, T. Helgaker, P. Jørgensen, Chem. Phys. Chem. 7, 245 (2006)Google Scholar
  24. 24.
    N. Mohammadi, A. Ganesan, C.T. Chantler, F. Wang, J. Organomet. Chem. 713, 51 (2012)CrossRefGoogle Scholar
  25. 25.
    F.A. Cotton, G. Wilkinson, Advanced Inorganic Chemistry, 5th edn. (John Wiley & Sons, New York, 1988)Google Scholar
  26. 26.
    C.P. Brock, Y. Fu, Acta Cryst. B Struct. Sci. 53, 928 (1997)CrossRefGoogle Scholar
  27. 27.
    K. Sünkel, S. Weigand, A. Hoffmann, S. Blomeyer, C.G. Reuter, Y.V. Vishnevskiy, N.W. Mitzel, J. Am. Chem. Soc. 137, 126 (2015)CrossRefGoogle Scholar
  28. 28.
    R.A. Prakash, K. Mishra, A. Roth, C. Kübel, T. Scherer, M. Ghafari, H. Hahn, M. Fichtner, J. Mater. Chem. 20, 1871 (2010)CrossRefGoogle Scholar
  29. 29.
    R. Boshra, K. Venkatasubbaiah, A. Doshi, R.A. Lalancette, L. Kakalis, F. Jäkle, Inorg. Chem. 46, 10174 (2007)CrossRefGoogle Scholar
  30. 30.
    P. Blaha, Wien2k, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties (Universität Wien, Austria, 2001)Google Scholar
  31. 31.
    P. Blaha, K. Schwarz, P. Sorantin, S. Trickey, Comput. Phys. Commun. 59, 399 (1990)CrossRefGoogle Scholar
  32. 32.
    M. Petersen, F. Wagner, L. Hufnagel, M. Scheffler, P. Blaha, K. Schwarz, Comput. Phys. Commun. 126, 294 (2000)CrossRefGoogle Scholar
  33. 33.
    W. Kohn, L. Sham, J. Phys. Rev. 140, 1133 (1965)CrossRefGoogle Scholar
  34. 34.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)CrossRefGoogle Scholar
  35. 35.
    M. Orio, D.A. Pantazis, F. Neese, Photosynth. Res. 102, 443 (2009)CrossRefGoogle Scholar
  36. 36.
    H.A. Rahnamaye Aliabad, Z. Parvizi, Comput. Mater. Sci. 93, 125 (2014)CrossRefGoogle Scholar
  37. 37.
    H.A. Rahnamaye Aliabad, H. Akbari, M.A. Saeed, Comput. Mater. Sci. 106, 5 (2015)CrossRefGoogle Scholar
  38. 38.
    M. Sahnoun, C. Daul, O. Haas, A. Wokaun, J. Phys. Condens. Matter 17, 7995 (2005)CrossRefGoogle Scholar
  39. 39.
    K. Schwarz, J. Solid State Chem. 176, 319 (2003)CrossRefGoogle Scholar
  40. 40.
    H.A. Rahnamaye Aliabad, Y. Asadi, I. Ahmad, Opt. Mater. 34, 1406 (2012)CrossRefGoogle Scholar
  41. 41.
    J.D. Dunitz, L.E. Orgel, A. Rich, Acta Cryst. 9, 373 (1956)CrossRefGoogle Scholar
  42. 42.
    A.H. Reshak, G. Lakshminarayana, H. Kamarudin, I. Kityk, S. Auluck, J. Berdowski, Z. Tylczynski, J. Mater. Sci. Mater. Electron. 23, 1922 (2012)CrossRefGoogle Scholar
  43. 43.
    J.C. Calabrese, L.T. Cheng, J.C. Green, S.R. Marder, W. Tam, J. Am. Chem. Soc. 113, 7227 (1991)CrossRefGoogle Scholar
  44. 44.
    B.A. Gupta, J. Elias, Basic Organometallic Chemistry: Concepts, Syntheses, and Applications of Transition Metals (Universities Press, Cambridge, 2013)Google Scholar
  45. 45.
    M. Swart, Inorg. Chim. Acta 360, 179 (2007)CrossRefGoogle Scholar
  46. 46.
    G. Wilkinson, M. Rosenblum, M. Whiting, R. Woodward, J. Am. Chem. Soc. 74, 2125 (1952)CrossRefGoogle Scholar
  47. 47.
    T. Kealy, P. Pauson, Nature 168, 1039 (1951)CrossRefGoogle Scholar
  48. 48.
    H.A. Rahnamaye Aliabad, V. Hesam, I. Ahmad, I. Khan, Phys. B 410, 112 (2013)CrossRefGoogle Scholar
  49. 49.
    S. Fery-Forgues, B. Delavaux-Nicot, J. Photochem. Photobiol. A Chem. 132, 137 (2000)CrossRefGoogle Scholar
  50. 50.
    M. Grizalez, M. Jairo Arbey Rodr Guez, J.S. Heiras, P. Prieto, J. Microelectron. 39, 563 (2008)CrossRefGoogle Scholar
  51. 51.
    P. Ravindran, A. Delin, R. Ahuja, B. Johansson, S. Auluck, J.M. Wills, O. Eriksson, Phys. Rev. 56, 6851 (1997)CrossRefGoogle Scholar
  52. 52.
    H.A. Rahnamaye Aliabad, S.M. Hosseini, A. Kompany, A. Youssefi, E.A. Kakhki, Phys. Stat. Solidi (b) 246, 1072 (2009)CrossRefGoogle Scholar
  53. 53.
    P. Puschnig, C. Ambrosch-Draxl, Phys. Rev. 66, 165105 (2002)CrossRefGoogle Scholar
  54. 54.
    Y.Y. Peter, M. Cardona, Fundamentals of Semiconductors: Physics and Materials Properties (Springer, Berlin, 2010)Google Scholar
  55. 55.
    P. Li, L.-H. Li, L. Chen, L.-M. Wu, J. Solid State Chem. 183, 444 (2010)CrossRefGoogle Scholar
  56. 56.
    S. Loughin, R. French, L. De Noyer, W. Ching, Y. Xu, J. Phys. D Appl. Phys. 29, 1740 (1996)CrossRefGoogle Scholar
  57. 57.
    S. Köstlmeier, C. Elsässer, Phys. Rev. 60, 14025 (1999)CrossRefGoogle Scholar
  58. 58.
    S.A. Maier, Plasmonics: Fundamentals and Applications (Springer, Berlin, 2007)Google Scholar
  59. 59.
    C. Ambrosch-Draxl, J.O. Sofo, Comput. Phys. Commun. 175, 1 (2006)CrossRefGoogle Scholar
  60. 60.
    W. Demtröder, Laser Spectroscopy: Basic Concepts and Instrumentation (Springer, Berlin, 2003)CrossRefGoogle Scholar
  61. 61.
    C. Kittel, Introduction to Solid State Physics (Wiley, Hoboken, 1996)Google Scholar
  62. 62.
    Y.S. Sohn, D.N. Hendrickson, H.B. Gray, J. Am. Chem. Soc. 93, 3603 (1971)CrossRefGoogle Scholar
  63. 63.
    M.C. Zerner, G.H. Loew, R.F. Kirchner, U.T. Mueller-Westerhoff, J. Am. Chem. Soc. 102, 589 (1980)CrossRefGoogle Scholar
  64. 64.
    J.W. Rabalais, L.O. Werme, T. Bergmark, L. Karlsson, M. Hussain, K. Siegbahn, J. Chem. Phys. 57, 1185 (1972)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of PhysicsHakim Sabzevari UniversitySabzevarIran
  2. 2.Department of ChemistryHakim Sabzevari UniversitySabzevarIran

Personalised recommendations