Skip to main content
Log in

Ab initio studies of optoelectronic properties of fluorine-substituted ferrocene

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Structural and optoelectronic properties of ferrocene and some derivatives (Fe C10X10, X = H, F) have been investigated by density functional theory. The full potential linearized augmented plane wave including generalized gradient approximation was used in this study. Since the ferrocene family has appealing photochemical and electrochemical properties, they have been extensively used in electronic and photonic industries. The current study accomplishes the electron density, density of states, and optical calculations. We have found that the optoelectronic properties of ferrocene change under substitution of hydrogen with fluorine. Band gaps of 2.72 and 0.92 eV were obtained for FeC10H10 and FeC10F10, respectively. The band gap was obviously reduced for the full fluorine-substituted ferrocene compared with the unsubstituted one, which exhibited an increase in the charge transfer properties. Results of the optical calculations also confirm these findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. Federman Neto, A.C. Pelegrino, V.A. Darin, Trends Organomet. Chem. 4, 147 (2002)

    CAS  Google Scholar 

  2. P.L. Pauson, J. Organomet. Chem. 637, 3–6 (2001)

    Article  Google Scholar 

  3. A. Nakamura, T. Ohshima, K. Mashima, J. Organomet. Chem. 690, 4373 (2005)

    Article  CAS  Google Scholar 

  4. P. Stepnicka, Ferrocenes: Ligands, Materials and Biomolecules (Wiley, Hoboken, 2008)

    Google Scholar 

  5. J.D. Qiu, M. Xiong, R.-P. Liang, H.-P. Peng, F. Liu, Biosens. Bioelectron. 24, 2649 (2009)

    Article  CAS  Google Scholar 

  6. S. Park, Electrochemical Evaluation of TCO Modifications Using Substituted Ferrocenes (The University Of Arizona, Tucson, 2012)

    Google Scholar 

  7. C. Paquet, P.W. Cyr, E. Kumacheva, I. Manners, Chem. Mater. 16, 5205 (2004)

    Article  CAS  Google Scholar 

  8. T.P. Gryaznova, S.A. Katsyuba, V.A. Milyukov, O.G. Sinyashin, J. Organomet. Chem. 695, 2586 (2010)

    Article  CAS  Google Scholar 

  9. B. Fábián, A. Csámpai, T.Z. Nagy, M. Czugler, P. Sohár, J. Organomet. Chem. 694, 3732 (2009)

    Article  Google Scholar 

  10. J.T. Chantson, M. Vittoria Vera Falzacappa, S. Crovella, N. Metzler-Nolte, Chem. Med. Chem. 1, 1268 (2006)

    Article  CAS  Google Scholar 

  11. G. Gasser, I. Ott, N. Metzler-Nolte, J. Med. Chem. 54, 3 (2010)

    Article  Google Scholar 

  12. M.F. Fouda, M.M. Abd-Elzaher, R.A. Abdelsamaia, A.A. Labib, Appl. Organomet. Chem. 21, 613 (2007)

    Article  CAS  Google Scholar 

  13. I. Willner, E. Katz, Angew. Chem. Int. Ed. 39, 1180 (2000)

    Article  Google Scholar 

  14. R.H. Crabtree, D. Mingos, T. Hiyama, Comprehensive Organometallic Chemistry III (Elsevier, Oxford, 2007)

    Google Scholar 

  15. A.S. Romanov, J.M. Mulroy, V.N. Khrustalev, M.Y. Antipin, T.V. Timofeeva, Acta Cryst. C Cryst. Struct. Commun. 65, 426 (2009)

    Article  Google Scholar 

  16. P.S. Liyanage, R.M. de Silva, K. de Silva, J. Mol. Struct. (Theochem) 639, 195 (2003)

    Article  CAS  Google Scholar 

  17. R. Nagarale, J.M. Lee, W. Shin, Electrochim. Acta 54, 6508 (2009)

    Article  CAS  Google Scholar 

  18. R. Jawaria, M. Hussain, Z. Shafiq, H.B. Ahmad, M.N. Tahir, H.A. Shad, M.M. Naseer, Cryst. Eng. Commun. 17, 2553 (2015)

    Article  CAS  Google Scholar 

  19. H. Pervez, M. Ahmad, T.B. Hadda, L. Toupet, M.M. Naseer, J. Mol. Struct. 1098, 124 (2015)

    Article  CAS  Google Scholar 

  20. A. Abbas, H. Gokce, S. Bahceli, M.M. Naseer, J. Mol. Struct. 1075, 352 (2014)

    Article  CAS  Google Scholar 

  21. O. Dereli, S. Bahceli, A. Abbas, M.M. Naseer, Monatsh. Chem. 146, 1473 (2015)

    Article  CAS  Google Scholar 

  22. J.D. Dunitz, Acta Cryst. B Struct. Sci. 51, 619 (1995)

    Article  Google Scholar 

  23. S. Coriani, A. Haaland, T. Helgaker, P. Jørgensen, Chem. Phys. Chem. 7, 245 (2006)

    CAS  Google Scholar 

  24. N. Mohammadi, A. Ganesan, C.T. Chantler, F. Wang, J. Organomet. Chem. 713, 51 (2012)

    Article  CAS  Google Scholar 

  25. F.A. Cotton, G. Wilkinson, Advanced Inorganic Chemistry, 5th edn. (John Wiley & Sons, New York, 1988)

    Google Scholar 

  26. C.P. Brock, Y. Fu, Acta Cryst. B Struct. Sci. 53, 928 (1997)

    Article  Google Scholar 

  27. K. Sünkel, S. Weigand, A. Hoffmann, S. Blomeyer, C.G. Reuter, Y.V. Vishnevskiy, N.W. Mitzel, J. Am. Chem. Soc. 137, 126 (2015)

    Article  Google Scholar 

  28. R.A. Prakash, K. Mishra, A. Roth, C. Kübel, T. Scherer, M. Ghafari, H. Hahn, M. Fichtner, J. Mater. Chem. 20, 1871 (2010)

    Article  CAS  Google Scholar 

  29. R. Boshra, K. Venkatasubbaiah, A. Doshi, R.A. Lalancette, L. Kakalis, F. Jäkle, Inorg. Chem. 46, 10174 (2007)

    Article  CAS  Google Scholar 

  30. P. Blaha, Wien2k, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties (Universität Wien, Austria, 2001)

    Google Scholar 

  31. P. Blaha, K. Schwarz, P. Sorantin, S. Trickey, Comput. Phys. Commun. 59, 399 (1990)

    Article  CAS  Google Scholar 

  32. M. Petersen, F. Wagner, L. Hufnagel, M. Scheffler, P. Blaha, K. Schwarz, Comput. Phys. Commun. 126, 294 (2000)

    Article  CAS  Google Scholar 

  33. W. Kohn, L. Sham, J. Phys. Rev. 140, 1133 (1965)

    Article  Google Scholar 

  34. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  CAS  Google Scholar 

  35. M. Orio, D.A. Pantazis, F. Neese, Photosynth. Res. 102, 443 (2009)

    Article  CAS  Google Scholar 

  36. H.A. Rahnamaye Aliabad, Z. Parvizi, Comput. Mater. Sci. 93, 125 (2014)

    Article  CAS  Google Scholar 

  37. H.A. Rahnamaye Aliabad, H. Akbari, M.A. Saeed, Comput. Mater. Sci. 106, 5 (2015)

    Article  CAS  Google Scholar 

  38. M. Sahnoun, C. Daul, O. Haas, A. Wokaun, J. Phys. Condens. Matter 17, 7995 (2005)

    Article  CAS  Google Scholar 

  39. K. Schwarz, J. Solid State Chem. 176, 319 (2003)

    Article  CAS  Google Scholar 

  40. H.A. Rahnamaye Aliabad, Y. Asadi, I. Ahmad, Opt. Mater. 34, 1406 (2012)

    Article  CAS  Google Scholar 

  41. J.D. Dunitz, L.E. Orgel, A. Rich, Acta Cryst. 9, 373 (1956)

    Article  CAS  Google Scholar 

  42. A.H. Reshak, G. Lakshminarayana, H. Kamarudin, I. Kityk, S. Auluck, J. Berdowski, Z. Tylczynski, J. Mater. Sci. Mater. Electron. 23, 1922 (2012)

    Article  CAS  Google Scholar 

  43. J.C. Calabrese, L.T. Cheng, J.C. Green, S.R. Marder, W. Tam, J. Am. Chem. Soc. 113, 7227 (1991)

    Article  CAS  Google Scholar 

  44. B.A. Gupta, J. Elias, Basic Organometallic Chemistry: Concepts, Syntheses, and Applications of Transition Metals (Universities Press, Cambridge, 2013)

    Google Scholar 

  45. M. Swart, Inorg. Chim. Acta 360, 179 (2007)

    Article  CAS  Google Scholar 

  46. G. Wilkinson, M. Rosenblum, M. Whiting, R. Woodward, J. Am. Chem. Soc. 74, 2125 (1952)

    Article  CAS  Google Scholar 

  47. T. Kealy, P. Pauson, Nature 168, 1039 (1951)

    Article  CAS  Google Scholar 

  48. H.A. Rahnamaye Aliabad, V. Hesam, I. Ahmad, I. Khan, Phys. B 410, 112 (2013)

    Article  CAS  Google Scholar 

  49. S. Fery-Forgues, B. Delavaux-Nicot, J. Photochem. Photobiol. A Chem. 132, 137 (2000)

    Article  CAS  Google Scholar 

  50. M. Grizalez, M. Jairo Arbey Rodr Guez, J.S. Heiras, P. Prieto, J. Microelectron. 39, 563 (2008)

    Article  CAS  Google Scholar 

  51. P. Ravindran, A. Delin, R. Ahuja, B. Johansson, S. Auluck, J.M. Wills, O. Eriksson, Phys. Rev. 56, 6851 (1997)

    Article  CAS  Google Scholar 

  52. H.A. Rahnamaye Aliabad, S.M. Hosseini, A. Kompany, A. Youssefi, E.A. Kakhki, Phys. Stat. Solidi (b) 246, 1072 (2009)

    Article  Google Scholar 

  53. P. Puschnig, C. Ambrosch-Draxl, Phys. Rev. 66, 165105 (2002)

    Article  Google Scholar 

  54. Y.Y. Peter, M. Cardona, Fundamentals of Semiconductors: Physics and Materials Properties (Springer, Berlin, 2010)

    Google Scholar 

  55. P. Li, L.-H. Li, L. Chen, L.-M. Wu, J. Solid State Chem. 183, 444 (2010)

    Article  CAS  Google Scholar 

  56. S. Loughin, R. French, L. De Noyer, W. Ching, Y. Xu, J. Phys. D Appl. Phys. 29, 1740 (1996)

    Article  CAS  Google Scholar 

  57. S. Köstlmeier, C. Elsässer, Phys. Rev. 60, 14025 (1999)

    Article  Google Scholar 

  58. S.A. Maier, Plasmonics: Fundamentals and Applications (Springer, Berlin, 2007)

    Google Scholar 

  59. C. Ambrosch-Draxl, J.O. Sofo, Comput. Phys. Commun. 175, 1 (2006)

    Article  CAS  Google Scholar 

  60. W. Demtröder, Laser Spectroscopy: Basic Concepts and Instrumentation (Springer, Berlin, 2003)

    Book  Google Scholar 

  61. C. Kittel, Introduction to Solid State Physics (Wiley, Hoboken, 1996)

    Google Scholar 

  62. Y.S. Sohn, D.N. Hendrickson, H.B. Gray, J. Am. Chem. Soc. 93, 3603 (1971)

    Article  CAS  Google Scholar 

  63. M.C. Zerner, G.H. Loew, R.F. Kirchner, U.T. Mueller-Westerhoff, J. Am. Chem. Soc. 102, 589 (1980)

    Article  CAS  Google Scholar 

  64. J.W. Rabalais, L.O. Werme, T. Bergmark, L. Karlsson, M. Hussain, K. Siegbahn, J. Chem. Phys. 57, 1185 (1972)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Prof. P. Blaha, Vienna University of Technology, Austria, is acknowledged for his technical help in the use of Wien2k package.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to H. A. Rahnamaye Aliabad or R. Tayebee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahnamaye Aliabad, H.A., Tayebee, R. & Boroumand Khalili, M. Ab initio studies of optoelectronic properties of fluorine-substituted ferrocene. Res Chem Intermed 42, 3743–3761 (2016). https://doi.org/10.1007/s11164-015-2242-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-015-2242-8

Keywords

Navigation