Skip to main content

Advertisement

Log in

Simulation and modeling of synthesis Cu nanoparticles in sodium alginate media by means of expert systems

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

This research was to apply the combination of the particle swarm optimization method and artificial neural network training with the aim of building a quantitative model to forecast the size of copper nanoparticles (Cu-NPs) prepared in sodium alginate. Sodium alginate, sodium hydroxide, copper sulfate, hydrazinium hydroxide, and ascorbic acid were used as stabilizer, pH moderator, copper precursor, reducing agent, and antioxidant, respectively. The results showed that the different sizes of Cu-NPs were obtained by changing these functions. Meaning that by increasing the amount of sodium alginate and or increase the volume of hydrazine hydrate, particle sizes of Cu-NPs were reduced. Other variables had the opposite effects due to the increase of the size of the Cu-NPs. The prediction results were remarkably in agreement with the experimental data with a correlation coefficient of 0.99 and a mean square error of 0.0058.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. P. Logeswari, S. Silambarasan. J. Abraham. J. Saudi. Chem. Soc. (2012). doi:10.1016/j.jscs.2012.04.007

  2. J. Xiong, X.D. Wu, Q.J. Xue, J. Interface Sci. 390, 41 (2013)

    Article  CAS  Google Scholar 

  3. L.M. Liz-Marzán, D.J. Norris, MRS Bull. 26, 981 (2001)

    Article  Google Scholar 

  4. A. Sedighi, M. Montazer, N. Samadi, Carbohydr. Polym. 110, 489 (2014)

    Article  CAS  Google Scholar 

  5. M. Veerapandian, S. Sadhasivam, J. Choi, K. Yun, Chem. Eng. J. 209, 558 (2012)

    Article  CAS  Google Scholar 

  6. N.A. Dhas, C.P. Raj, A. Gedanken, Chem. Mater. 10, 1446 (1998)

    Article  CAS  Google Scholar 

  7. C. Gunawan, W.Y. Teoh, C.P. Marquis, R. Amal, ACS Nano. 5, 7214 (2011)

    Article  CAS  Google Scholar 

  8. J.P. Ruparelia, A.K. Chatterjee, S.P. Duttagupta, S. Mukherjis, Acta Biomater. 4, 707 (2008)

    Article  CAS  Google Scholar 

  9. O.V. Kharissova, H. Dias, B.I. Kharisov, B.O. Pérez, V.M.J. Pérez, Trends Biotechnol. 31, 240 (2013)

    Article  CAS  Google Scholar 

  10. T. Aftab, M. Khan, M. Naeem, M. Idrees, T. Siddiqi, L. Varshney, Carbohydr. Polym. 110, 396 (2014)

    Article  CAS  Google Scholar 

  11. A.C. Ribeiro, I. Fabela, A.J. Sobral, L.M. Verissimo, M.C. Barros, M.M. Rodrigo, M.A. Esteso, J. Chem. Thermodyn. 74, 263 (2014)

    Article  CAS  Google Scholar 

  12. J. Ma, Y. Lin, X. Chen, B. Zhao, J. Zhang, Food Hydrocoll. 38, 119 (2014)

    Article  CAS  Google Scholar 

  13. Q. Xiao, X. Gu, S. Tan, Food Chem. 164, 179 (2014)

    Article  CAS  Google Scholar 

  14. K.M. Desai, B.K. Vaidya, R.S. Singhal, S.S. Bhagwat, Process. Biochem. 40, 1617 (2005)

    Article  CAS  Google Scholar 

  15. S. Agatonovic-Kustrin, V. Wu, T. Rades, D. Saville, I.G. Tucker, Int. J. Pharm. 184, 107 (1999)

    Article  CAS  Google Scholar 

  16. A. Ghafari Nazari, M. Mozafari, Adv. Powder Technol. 23, 220 (2012)

    Article  Google Scholar 

  17. H. Taghavifara, A. Mardania, H. Karim-Maslaka, H. Kalbkhanib, Appl. Soft Comput. 13, 3544 (2013)

    Article  Google Scholar 

  18. M. Khajeh, K. Dastafkan, J. Ind. Eng. Chem. 20, 3014 (2014)

    Article  CAS  Google Scholar 

  19. M. Khajeh, S. Hezaryan, J. Ind. Eng. Chem. 19, 2100 (2013)

    Article  CAS  Google Scholar 

  20. E. Vatankhah, D. Semnani, M.P. Prabhakaran, M. Tadayon, S. Razavi, S. Ramakrishna, Acta Biomater. 10, 709 (2014)

    Article  CAS  Google Scholar 

  21. M. Rezakazemi, A. Ghafarinazari, S. Shirazian, A. Khoshsima, Polym. Eng. Sci. 53, 1272 (2013)

    Article  CAS  Google Scholar 

  22. J. Kennedy, R.C. Eberhart. IEEE Service Center, Piscataway, NJ, 39, 1942 (1995)

  23. A. Kaveh, S. Talatahari, Comput. Struct. 88, 1220 (2010)

    Article  Google Scholar 

  24. P. Shabanzadeh, R. Yusof, K. Shameli, J. Ind. Eng. Chem. 24, 42 (2015)

    Article  CAS  Google Scholar 

  25. P. Shabanzadeh, N. Senu, K. Shameli, M. Mohagheghtabar, E.-J. Chem. 305713, 1 (2013). doi:10.1155/2013/305713

    Google Scholar 

  26. P. Shabanzadeh, N. Senu, K. Shameli, F. Ismail, Dig. J. Nanomater. Bios. 8(3), 1133 (2013)

    Google Scholar 

  27. P. Shabanzadeh, N. Senu, K. Shameli, F. Ismail, A. Zamanian, M. Mohagheghtabar, Res. Chem. Intermediat. 41(5), 3275 (2015)

    Article  CAS  Google Scholar 

  28. P. Shabanzadeh, N. Senu, K. Shameli, F. Ismail, M. Mohagheghtabar, Dig. J. Nanomater. Bios. 8(2), 541 (2013)

    Google Scholar 

  29. P. Shabanzadeh, R. Yusof, K. Shameli, Dig. J. Nanomater. Bios. 9(4), 1699 (2014)

    Google Scholar 

  30. H. Taghavifar, E. Shabahangnia, Int. Commun. Heat Mass Transf. 50, 1515 (2014)

    Article  CAS  Google Scholar 

  31. R. Karadag, O. Akgobek, Int. Commun. Heat Mass Transf. 35, 312 (2008)

    Article  Google Scholar 

  32. M. Khajeh, M. Kaykhaii, A. Sharafi, J. Ind. Eng. Chem. 19, 1624 (2013)

    Article  CAS  Google Scholar 

  33. M. Khayet, C. Cojocaru, Desalination 287, 138 (2012)

    Article  CAS  Google Scholar 

  34. C. Zhang, H. Shao, Y. Li, Proc. IEEE Int. Conf. Syst. Man Cyber. 4, 2487 (2000). doi:10.1109/ICSMC.2000.884366

    Article  Google Scholar 

  35. J. Kennedy, R.C. Eberhart, Y. Shi, Swarm intelligence (Morgan Kaufmann Publishers, San Francisco, 2001)

    Google Scholar 

  36. J. Kennedy, R. Mendes, in Proceedings of the IEEE Congress on Evolutionary Computation 2002, Honolulu, Hawaii, USA (2002)

  37. J. Kennedy, W. Spears, in Proceedings of IEEE Congress on Evolutionary Computation Anchorage, Alaska, USA (1998)

  38. M. Salavati-Niasari, F. Davar, N. Mir, Polyhedron 27, 3514 (2008)

    Article  CAS  Google Scholar 

  39. Y. Kobayashi, Y. Abe, T. Maeda, Y. Yasuda, T. Morita, J. Mater. Res. Technol. 3, 114 (2014)

    Article  CAS  Google Scholar 

  40. I. Yilmaz, O. Kaynar, Expert Syst. Appl. 38, 5958 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Ministry of Education Malaysia for funding this research project through a Research University Grant of Universiti Teknologi Malaysia (UTM), project titled “Based syariah compliance chicken slaughtering process for online monitoring and enforcement” (01G55). Also, thanks to the Research Management Center (RMC) of UTM for providing an excellent research environment in which to complete this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Parvaneh Shabanzadeh, Rubiyah Yusof or Kamyar Shameli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shabanzadeh, P., Yusof, R., Shameli, K. et al. Simulation and modeling of synthesis Cu nanoparticles in sodium alginate media by means of expert systems. Res Chem Intermed 42, 2831–2843 (2016). https://doi.org/10.1007/s11164-015-2180-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-015-2180-5

Keywords

Navigation