Anodic self-organized transparent nanotubular/porous hematite films from Fe thin-films sputtered on FTO and photoelectrochemical water splitting

Abstract

In the present work, we investigate the self-organized anodic formation of nanotubular/porous hematite structures from Fe thin films on fluorine doped tin oxide (FTO) substrates. We show, for different metal film thicknesses, that transparent layers of an aligned 1D oxide morphology can be grown by complete anodization of sputtered iron films. The nanoporous or nanotubular structures show very different potentials for use as a photoanode for solar water splitting. Best performance under AM 1.5 (100 mW cm−2) conditions were found for a nanoporous hematite structure obtained after anodizing a 570-nm-thick iron film and using combined air/Ar annealing to maintain the nanoscale morphology.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    S.U.M. Khan, J. Akikusa, J. Phys. Chem. B 103(34), 7184 (1999)

    CAS  Article  Google Scholar 

  2. 2.

    Y.S. Hu, A. Kleiman-Shwarsctein, A.J. Forman, D. Hazen, J.N. Park, E.W. McFarland, Chem. Mater. 20(12), 3803 (2008)

    CAS  Article  Google Scholar 

  3. 3.

    K. Sivula, R. Zboril, F. Le Formal, R. Robert, A. Weidenkaff, J. Tucek, J. Frydrych, M. Grätzel, J. Am. Chem. Soc. 132(21), 7436 (2010)

    CAS  Article  Google Scholar 

  4. 4.

    K. Sivula, F. Le Formal, M. Grätzel, ChemSusChem 4(4), 432 (2011)

    CAS  Article  Google Scholar 

  5. 5.

    F.L. Formal, M. Grätzel, K. Sivula, Adv. Funct. Mater. 20(7), 1099 (2010)

    Article  Google Scholar 

  6. 6.

    Y. Ling, G. Wang, D.A. Wheeler, J.Z. Zhang, Y. Li, Nano Lett. 11(5), 2119 (2011)

    CAS  Article  Google Scholar 

  7. 7.

    L. Jia, K. Harbauer, P. Bogdanoff, I. Herrmann-Geppert, A. Ramirez, R. van de Krol, S. Fiechter, J. Mater. Chem. A 2, 20196 (2014)

    CAS  Article  Google Scholar 

  8. 8.

    S. Kment, Z. Hubicka, J. Krysa, D. Sekora, M. Zlamal, J. Olejnicek, M. Cada, P. Ksirova, Z. Remes, P. Schmuki, E. Schubert, R. Zboril, Appl. Catal. B Environ. 165, 344 (2015)

    CAS  Article  Google Scholar 

  9. 9.

    S. Kment, Z. Hubicka, J. Krysa, J. Olejnicek, M. Cada, I. Gregora, M. Zlamal, M. Brunclikova, Z. Remes, N. Liu, L. Wang, R. Kirchgeorg, C.Y. Lee, P. Schmuki, Catal. Today 230, 8 (2014)

    CAS  Article  Google Scholar 

  10. 10.

    J. Krysa, M. Zlamal, S. Kment, M. Brunclikova, Z. Hubicka, Molecules 20(1), 1046 (2015)

    CAS  Article  Google Scholar 

  11. 11.

    R. Rajendran, Z. Yaakob, M. Pudukudy, M.S.A. Rahaman, K. Sopian, J. Alloy. Compdn. 608, 207 (2014)

    CAS  Article  Google Scholar 

  12. 12.

    K. Sivula, F. Le Formal, M. Grätzel, Chem. Mater. 21(13), 2862 (2009)

    CAS  Article  Google Scholar 

  13. 13.

    P.H. Borse, H. Jun, S.H. Choi, S.J. Hong, J.S. Lee, Appl. Phys. Lett. 93(17), 173103 (2008)

    Article  Google Scholar 

  14. 14.

    J. Brillet, M. Grätzel, K. Sivula, Nano Lett. 10(10), 4155 (2010)

    CAS  Article  Google Scholar 

  15. 15.

    R.H. Goncalves, B.H.R. Lima, E.R. Leite, J. Am. Chem. Soc. 133(15), 6012 (2011)

    CAS  Article  Google Scholar 

  16. 16.

    N. Beermann, L. Vayssieres, S.E. Lindquist, A. Hagfeldt, J. Electrochem. Soc. 147(7), 2456 (2000)

    CAS  Article  Google Scholar 

  17. 17.

    R. Morrish, M. Rahman, J.M.D. MacElroy, C.A. Wolden, ChemSusChem 4(4), 474 (2011)

    CAS  Article  Google Scholar 

  18. 18.

    A. Mao, K. Shin, J.K. Kim, D.H. Wang, G.Y. Han, J.H. Park, A.C.S. Appl, Mater. Interfaces 3(6), 1852 (2011)

    CAS  Article  Google Scholar 

  19. 19.

    S.K. Mohapatra, S.E. John, S. Banerjee, M. Misra, Chem. Mater. 21(14), 3048 (2009)

    CAS  Article  Google Scholar 

  20. 20.

    R.R. Rangaraju, A. Panday, K.S. Raja, M. Misra, J. Phys. D Appl. Phys. 42(13), 135303 (2009)

    Article  Google Scholar 

  21. 21.

    W. Hamd, S. Cobo, J. Fize, G. Baldinozzi, W. Schwartz, M. Reymermier, A. Pereira, M. Fontecave, V. Artero, C. Laberty-Robert, C. Sanchez, Phys. Chem. Chem. Phys. 14(38), 13224 (2012)

    CAS  Article  Google Scholar 

  22. 22.

    L. Wang, C.-Y. Lee, P. Schmuki, J. Mater Chem. A 1(2), 212 (2013)

    CAS  Article  Google Scholar 

  23. 23.

    C.-Y. Lee, L. Wang, Y. Kado, R. Kirchgeorg, P. Schmuki, Electrochem. Commun. 34, 308 (2013)

    CAS  Article  Google Scholar 

  24. 24.

    H. Habazaki, Y. Konno, Y. Aoki, P. Skeldon, G.E. Thompson, J. Phys. Chem. C 114(44), 18853 (2010)

    CAS  Article  Google Scholar 

  25. 25.

    S.P. Albu, P. Schmuki, Electrochim. Acta 91, 90 (2013)

    CAS  Article  Google Scholar 

  26. 26.

    T.J. Nakau, Phys. Soc. Japan 15, 727 (1960)

    CAS  Article  Google Scholar 

Download references

Acknowledgments

We thank DFG and the DFG cluster of excellence “Engineering of Advanced Materials” (EAM), and project 13-29241P of the Grant Agency of the Czech Republic for financial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Štěpán Kment.

Additional information

Patrik Schmuki: Electrochemical Society Activity Member.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Lee, C., Kirchgeorg, R. et al. Anodic self-organized transparent nanotubular/porous hematite films from Fe thin-films sputtered on FTO and photoelectrochemical water splitting. Res Chem Intermed 41, 9333–9341 (2015). https://doi.org/10.1007/s11164-015-2021-6

Download citation

Keywords

  • Hematite nanotubular/porous
  • Anodization
  • Sputtered iron films
  • Water splitting