Skip to main content
Log in

Semiconducting WO3 thin films prepared by pulsed reactive magnetron sputtering

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

WO3 crystalline semiconductor thin films for water-splitting applications were prepared by pulsed unbalanced reactive magnetron sputtering with W target and Ar + O2 gas mixture. Postdeposition annealing at temperature of 450 °C was applied to the WO3 samples to improve their crystallinity and semiconductor properties. Various pulsing modes were tested in deposition experiments with different pulsing frequencies, discharge power applied in pulse, and average applied power. To determine the influence of the plasma parameters on the deposition process, the pulsed and average ion flux density on the substrate were measured using an ion probe. The WO3 films had monoclinic crystalline structure after the annealing process. Different crystallite orientations were found for different modes of discharge pulsing. Preferential orientation of the (200) plane parallel to the substrate surface was identified for higher frequency of discharge pulsing with lower substrate pulsed ion flux but higher average substrate ion flux. The WO3 films with this type of texture had the highest photocurrents in photoelectrochemical (PEC) measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S.U.M. Khan, M. Al-Shahry, W.B. Ingler, Science 297, 2243 (2002)

    Article  CAS  Google Scholar 

  2. S. Kment, Z. Hubicka, J. Krysa, J. Olejnicek, M. Cada, I. Gregora, M. Zlamal, M. Brunclikova, Z. Remes, N. Liu, L. Wang, R. Kirchgeorg, C.Y. Lee, P. Schmuki, Catal. Today 230, 8 (2014)

    Article  CAS  Google Scholar 

  3. M. Green, W.C. Smith, J.A. Weiner, Thin Solid Films 38, 89 (1976)

    Article  CAS  Google Scholar 

  4. M. Nagasu, N. Koshida, Appl. Phys. Lett. 57, 1324 (1990)

    Article  CAS  Google Scholar 

  5. S. Reich, G. Leitus, R. Popovitz-Biro, A. Goldbourt, S. Vega, J. Supercond. Nov. Magn. 22, 343 (2009)

    Article  CAS  Google Scholar 

  6. A. Aird, E.K.H. Salje, J. Phys. Condens. Matter 10, L377 (1998)

    Article  CAS  Google Scholar 

  7. K. Ito, T. Ohgami, Appl. Phys. Lett. 60, 938 (1992)

    Article  CAS  Google Scholar 

  8. G.W. Ho, K.J. Chua, D.R. Siow, Chem. Eng. J. 181, 661 (2012)

    Article  Google Scholar 

  9. J.M. Foley, M.J. Price, J.I. Feldblyum, S. Maldonado, Energy Environ. Sci. 5, 5203 (2012)

    Article  CAS  Google Scholar 

  10. X. Liu, F.Y. Wang, Q. Wang, Phys. Chem. Chem. Phys. 14, 7894 (2012)

    Article  CAS  Google Scholar 

  11. P.T. Hsiao, L.C. Chen, T.L. Li, H.S. Teng, J. Mater. Chem. 21, 19402 (2011)

    Article  CAS  Google Scholar 

  12. D.D. Qin, C.L. Tao, S.A. Friesen, T.H. Wang, O.K. Varghese, N.Z. Bao, Z.Y. Yang, T.E. Mallouk, C.A. Grimes, Chem. Commun. 48, 729 (2012)

    Article  CAS  Google Scholar 

  13. H. Ishihara, G.K. Kannarpady, K.R. Khedir, J. Woo, S. Trigwell, A.S. Biris, Phys. Chem. Chem. Phys. 13, 19553 (2011)

    Article  CAS  Google Scholar 

  14. H.D. Zheng, A.Z. Sadek, K. Latham, K. Kalantar-Zadeh, Electrochem. Commun. 11, 768 (2009)

    Article  CAS  Google Scholar 

  15. B. Marsen, E.L. Miller, D. Paluselli, R.E. Rocheleau, Int. J. Hydrog. Energy 32, 3110 (2007)

    Article  CAS  Google Scholar 

  16. X.H. Zhang, X.H. Lu, Y.Q. Shen, J.B. Han, L.Y. Yuan, L. Gong, Z. Xu, X.D. Bai, M. Wei, Y.X. Tong, Y.H. Gao, J. Chen, J. Zhou, Z.L. Wang, Chem. Commun. 47, 5804 (2011)

    Article  CAS  Google Scholar 

  17. K. Sivula, F. Le Formal, M. Gratzel, Chem. Mater. 21, 2862 (2009)

    Article  CAS  Google Scholar 

  18. Y. Sun, C.J. Murphy, K.R. Reyes-Gil, E.A. Reyes-Garcia, J.M. Thornton, N.A. Morris, D. Raftery, Int. J. Hydrog. Energy 34, 8476 (2009)

    Article  CAS  Google Scholar 

  19. J.A. Seabold, K.S. Choi, Chem. Mater. 23, 1105 (2011)

    Article  CAS  Google Scholar 

  20. S. Kment, P. Kluson, V. Stranak, P. Virostko, J. Krysa, M. Cada, J. Pracharova, M. Kohout, M. Morozova, P. Adamek, Z. Hubicka, Electrochim. Acta 54, 3352 (2009)

    Article  CAS  Google Scholar 

  21. S. Kment, P. Kluson, Z. Hubicka, J. Krysa, M. Cada, I. Gregora, A. Deyneka, Z. Remes, H. Zabova, L. Jastrabik, Electrochim. Acta 55, 1548 (2010)

    Article  CAS  Google Scholar 

  22. M.A. Sobolewski, Appl. Phys. Lett. 72, 1146 (1998)

    Article  CAS  Google Scholar 

  23. T. Zhu, M.N. Chong, E.S. Chan, ChemSusChem 7, 2974 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by project P108/12/2104 of the Grant Agency of the Czech Republic and by project LH12043 of MSMT of the Czech Republic and by the Academy of Sciences of the Czech Republic (project M100101215).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Brunclíková.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brunclíková, M., Hubička, Z., Kment, Š. et al. Semiconducting WO3 thin films prepared by pulsed reactive magnetron sputtering. Res Chem Intermed 41, 9259–9266 (2015). https://doi.org/10.1007/s11164-015-1991-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-015-1991-8

Keywords

Navigation