Skip to main content

Advertisement

Log in

An improved synthesis of sunitinib malate via a solvent-free decarboxylation process

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

To search for an economical and convenient synthesis of sunitinib and its malate salt, optimization of a scalable synthetic route was explored by designing a standard experimental protocol on laboratory scale using commercially available materials including acetyl ethyl acetate, 4-fluoroaniline, and N 1,N 1-diethylethane-1,2-diamine. The optimal conditions were established based on investigating the main reaction steps, including cyclization, hydrolysis, decarboxylation, formylation, and condensation, giving optimized yields for each step of 94.4, 97.6, 98.5, 97.1, 91.0, 86.3, 85.5, 88.2, 99.1, 97.3, and 58.7 %, respectively. The synthesis process of 5-formyl-2,4-dimethyl-1H-pyrrole-3-carboxylic acid as the important intermediate was significantly improved by using solvent-free decarboxylation instead of the traditional process in a high-boiling-point solvent. The subsequent formylation was conducted directly using the dichloromethane solution of the crude product from decarboxylation, leading to an almost quantitative combined yield of these two steps. The overall yields of sunitinib and its salt using the optimal synthesis process were 67.3 and 40.0 % based on acetyl ethyl acetate. The obtained data could be used as reference for future industrialization, especially for avoiding expensive solvents and reducing reaction time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2

Similar content being viewed by others

References

  1. F. Musumeci, M. Radi, C. Brullo, S. Schenone, J. Med. Chem. 55(24), 10797–10822 (2012)

    Article  CAS  Google Scholar 

  2. R. Roskoski Jr, Biochem. Biophys. Res. Commun. 356(2), 323–328 (2007)

    Article  CAS  Google Scholar 

  3. S. Schenone, C. Brullo, M. Botta, Curr. Med. Chem. 15(29), 3113–3132 (2008)

    Article  CAS  Google Scholar 

  4. C.A. Lipinski, F. Lombardo, B.W. Dominy, P.J. Feeney, Adv. Drug Del. Rev. 46(1–3), 3–26 (2001)

    Article  CAS  Google Scholar 

  5. J.M. Manley, M.J. Kalman, B.G. Conway, C.C. Ball, J.L. Havens, R. Vaidyanathan, J. Org. Chem. 68(16), 6447–6450 (2003)

    Article  CAS  Google Scholar 

  6. L. Sun, C. Liang, S. Shirazian, Y. Zhou, T. Miller, J. Cui, J.Y. Fukuda, J.-Y. Chu, A. Nematalla, X. Wang, H. Chen, A. Sistla, T.C. Luu, F. Tang, J. Wei, C. Tang, J. Med. Chem. 46(7), 1116–1119 (2003)

    Article  CAS  Google Scholar 

  7. J.Q. Wang, K.D. Miller, G.W. Sledge, Q.H. Zheng, Bioorg. Med. Chem. Lett. 15(19), 4380–4384 (2005)

    Article  CAS  Google Scholar 

  8. K. Sidoryk, M. Malinska, K. Bankowski, M. Kubiszewski, M. Laszcz, M. Bodziachowska-Panfil, M. Kossykowska, T. Giller, A. Kutner, K. Wozniak, J. Pharm. Sci. 102(2), 706–716 (2013)

    Article  CAS  Google Scholar 

  9. K. Lv, L.L. Wang, M.L. Liu, X.B. Zhou, S.Y. Fan, H.Y. Liu, Z.B. Zheng, S. Li, Bioorg. Med. Chem. Lett. 21(10), 3062–3065 (2011)

    Article  CAS  Google Scholar 

  10. R. Vaidyanathan, V.G. Kalthod, D.P. Ngo, J.M. Manley, S.P. Lapekas, J. Org. Chem. 69(7), 2565–2568 (2004)

    Article  CAS  Google Scholar 

  11. Z. Fang, P. Wei, Z. Yang, Chin. J. Pharm. 38(11), 822–824 (2007)

    CAS  Google Scholar 

  12. G. Meng, M.-L. Zheng, M. Wang, Org. Prep. Proced. Int. 43(3), 308–311 (2011)

    Article  CAS  Google Scholar 

  13. B. Liu, R. Lin, J. Liao, Z. Li, K. Chen, Chin. J. Pharm. 38(8), 539–542 (2007)

    CAS  Google Scholar 

  14. Z. Fang, Z. Yang, S. Bao, W. Wang, P. Wei, Huaxue Shiji 32(1), 82–84 (2010)

    CAS  Google Scholar 

  15. V.Q. Yen, N.P. Buu-Hoi, N.D. Xuong, J. Org. Chem. 23(12), 1858–1861 (1958)

    Article  CAS  Google Scholar 

  16. K. Lv, Y. Du, D. Zhao, Z. Zheng, S. Li, Chinese. J. Med. Chem. 19(2), 116–119 (2009)

    Google Scholar 

  17. R.A. Schnettler, R.C. Dage, J.M. Grisar, U.S. Patent 4560700, 24 Dec 1985

  18. J.V. Cooney, E.J. Beal, R.N. Hazlett, Org. Prep. Proced. Int. 15(4), 292–295 (1983)

    Article  CAS  Google Scholar 

  19. P. Tang, T.A. Miller, X. Li, L. Sun, C.C. Wei, S. Shirazian, C. Liang, T. Vojkovsky, A.S. Nematala, M. Hawley, ed. WO (US, 2002)

  20. K.C. Joshi, V.N. Pathak, S.K. Jain, Pharmazie 35(11), 677–679 (1980)

    CAS  Google Scholar 

  21. X. Dong, F. Zhou, R. Wen, Chinese. J. Med. Chem. 18(1), 28–31 (2008)

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Returned Overseas Chinese Scholars, State Education Ministry (SRF for ROCS, SEM), P.R. China (JWSL 20101561) and Technology Research and Development Program of China, International Cooperation (2013KW31-04) for financial support. The research work has also been sponsored by the National Undergraduate Innovative Experiment Program (2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ge Meng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1845 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, G., Liu, C., Qin, S. et al. An improved synthesis of sunitinib malate via a solvent-free decarboxylation process. Res Chem Intermed 41, 8941–8954 (2015). https://doi.org/10.1007/s11164-015-1939-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-015-1939-z

Keywords

Navigation