Skip to main content

Photocatalytic properties of BiVO4 synthesized by microwave-assisted hydrothermal method under simulated sunlight irradiation

Abstract

BiVO4 with monoclinic-type structure were successfully synthesized by microwave-assisted hydrothermal method (BiMH) and hydrothermal reaction (BiH500) in aqueous medium. The materials were characterized by X-ray diffraction, scanning electron microscopy, Barrett–Emmett–Teller technique, diffuse reflectance spectroscopy, and UV–Vis spectroscopy. The photocatalytic activity of samples was evaluated by the degradation of different pollutants such as xanthene (rhodamine B), indigoids (indigo carmine), and antibiotics (tetracycline) under simulated sun-light irradiation. The relation among surface area, morphology, particle size, charge recombination, and photocatalytic performance of the powders was also discussed. The degradation of the antibiotic solution (TC) over BiVO4 photocatalyst was quickly reached for with half-life time (t 1/2) minor than 12 min. On the other hand, in the case of organic dyes (RhB and IC) the best results were t 1/2 = 79 and 150 min under simulated sun-light irradiation, respectively. BiVO4, had a good stability, did not present photocorroded under irradiation. The degree of mineralization of the organic compounds was determined by total organic content (TOC) analysis, which revealed that mineralization by the action of BiMH is feasible in 83 % (RhB), 58 % (IC), and 50 % (TC) after 96 h of irradiation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    N.M. Roden, E.V. Sargent, G.T. DiFerdinando Jr, Hum. Ecol. Risk Assess. Int. J. 21(1), 280–295 (2015)

    CAS  Article  Google Scholar 

  2. 2.

    A.K. Venkatesan, R.U. Halden, Sci. Rep. 4, 3731 (2014)

    Article  Google Scholar 

  3. 3.

    C.G. Daughton, T.A. Ternes, Environ. Health Perspect. 107, 907–938 (1999)

    CAS  Article  Google Scholar 

  4. 4.

    A.J. Watkinson, E.J. Murbyc, S.D. Costanzoa, Water Res. 41, 4164–4176 (2007)

    CAS  Article  Google Scholar 

  5. 5.

    S. Xia, R. Jia, F. Feng, K. Xie, H. Li, D. Jing, X. Xu, Bioresour. Technol. 106, 36–43 (2012)

    CAS  Article  Google Scholar 

  6. 6.

    B. Li, T. Zhang, Chemosphere 83, 1284–1289 (2011)

    Article  Google Scholar 

  7. 7.

    S. Sarkar, S. Ali, L. Rehmann et al., J. Hazard. Mater. 278, 16–24 (2014)

    CAS  Article  Google Scholar 

  8. 8.

    I. Michael, E. Hapeshi, C. Michael, A.R. Varela et al., Water Res. 46, 5621–5634 (2012)

    CAS  Article  Google Scholar 

  9. 9.

    E.S. Elmolla, M. Chaudhuri, Desalination 272, 218–224 (2011)

    CAS  Article  Google Scholar 

  10. 10.

    J. Choi, H. Lee, Y. Choi, S. Kim et al., Appl. Catal. B Environ. 147, 8–16 (2014)

    CAS  Article  Google Scholar 

  11. 11.

    S.G. Kumar, L.G. Devi, J. Phys. Chem. A 115, 13211–13241 (2011)

    CAS  Article  Google Scholar 

  12. 12.

    Z. Liu, X. Dong, Z. Liu, Q. Liu, Adv. Mater. Res. 807, 402–409 (2013)

    Google Scholar 

  13. 13.

    M. Takeuchi, M. Matsuoka, M. Anpo, Res. Chem. Intermed. 38(6), 1261–1277 (2011)

    Article  Google Scholar 

  14. 14.

    H. Trabelsi, M. Khadhraouia, O. Hentatia, M. Ksibia, Toxicol. Environ. Chem. 95, 543–555 (2013)

    CAS  Article  Google Scholar 

  15. 15.

    J.B. Joo, Q. Zhang, M. Dahl, I. Lee, J. Goebl, F. Zaera, Y. Yin, Energy Environ. Sci. 5, 6321–6327 (2012)

    CAS  Article  Google Scholar 

  16. 16.

    C. Gómez-Solís, D. Sánchez-Martínez, I. Juárez-Ramírez, A. Martínez-de la Cruz, L.M. Torres-Martínez, J. Photochem. Photobiol. A Chem. 262, 28–33 (2013)

    Article  Google Scholar 

  17. 17.

    F. Zhang, K. Maeda, T. Takata, T. Hisatomi, K. Domen, Catal. Today 185, 253–258 (2012)

    CAS  Article  Google Scholar 

  18. 18.

    Y. Zhang, Y. Zhu, J. Yu, D. Yang, T.W. Ng, P.K. Wong, C.Y. Jimmy, Nanoscale 5, 6307–6310 (2013)

    CAS  Article  Google Scholar 

  19. 19.

    Y. Cheng, J. Chen, X. Yan, Z. Zheng, Q. Xue, RSC Adv. 3, 20606–20612 (2013)

    CAS  Article  Google Scholar 

  20. 20.

    R.L. Frost, D.A. Henry, M.L. Weier, W. Martens, J. Raman Spectrosc. 37, 722–732 (2006)

    CAS  Article  Google Scholar 

  21. 21.

    M. Dragomir, I. Arčona, S. Gardonio, M. Valant, Acta Mater. 61, 1126–1135 (2013)

    CAS  Article  Google Scholar 

  22. 22.

    W. Yin, W. Wang, L. Zhou, S. Sun, L. Zhang, J. Hazard. Mater. 173, 194–199 (2010)

    CAS  Article  Google Scholar 

  23. 23.

    B Cheng, W Wang, L Shi, J Zhang, J Ran, H Yu (2012) Int J Photoenergy. Article ID 797968

  24. 24.

    S. Mozia, A. Heciak, A.W. Morawski, Appl. Catal. B Environ. 104, 21–29 (2011)

    CAS  Article  Google Scholar 

  25. 25.

    J. Hou, Y. Qu, D. Krsmanovic, C. Ducati, D. Eder, R.V. Kumar, J. Mater. Chem. 20, 2418–2423 (2012)

    Article  Google Scholar 

  26. 26.

    M. Shang, W. Wang, J. Ren, S. Sun, L. Zhang, CrystEngComm. 12, 1754–1758 (2010)

    CAS  Article  Google Scholar 

  27. 27.

    J. Yu, Y. Zhang, A. Kudo, J. Solid State Chem. 182, 223–228 (2009)

    CAS  Article  Google Scholar 

  28. 28.

    Y. Liu, J. Ma, Z. Liu, C. Dai, Z. Song, Y. Sun, J. Fang, J. Zhao, Ceram. Int. 36, 2073–2077 (2010)

    CAS  Article  Google Scholar 

  29. 29.

    S. Obregón, A. Caballero, G. Colón, Appl. Catal. B Environ. 117–118, 59–66 (2012)

    Article  Google Scholar 

  30. 30.

    Y. Shi, C. Zhu, L. Wang, C. Zhao, W. Li, K.K. Fung, T. Ma, A. Hagfeldt, N. Wang, Chem. Mater. 25, 1000–1012 (2013)

    CAS  Article  Google Scholar 

  31. 31.

    L. Ma, W.-H. Lia, J.-H. Luo, Mater. Lett. 102–103, 65–67 (2013)

    Article  Google Scholar 

  32. 32.

    W. Shi, Y. Yan, X. Yan, Chem. Eng. J. 215–216, 740–746 (2013)

    Article  Google Scholar 

  33. 33.

    L. Zhang, G. Tan, S. Wei, H. Ren, A. Xia, Y. Luo, Ceram. Int. 39, 8597–8604 (2013)

    CAS  Article  Google Scholar 

  34. 34.

    G. Tan, L. Zhang, H. Ren, J. Huang, W. Yang, A. Xia, Ceram. Int. 40, 8597–8604 (2014)

    Google Scholar 

  35. 35.

    G. Tan, L. Zhang, H. Ren, S. Wei, J. Huang, A. Xia, ACS Appl. Mater. Interfaces 5, 5186–5193 (2013)

    CAS  Article  Google Scholar 

  36. 36.

    D.B. Hernández-Uresti, A. Martínez-de la Cruz, J.A. Aguilar-Garib, Catal. Today 212, 70–74 (2013)

    Article  Google Scholar 

  37. 37.

    M. Oshikiri, M. Boero, J. Ye, Z. Zou, G. Kido, J. Chem. Phys. 117, 7313–7318 (2002)

    CAS  Article  Google Scholar 

  38. 38.

    L. Zhou, W. Wang, S. Liu, L. Zhang, H. Xu, W. Zhu, J. Mol. Catal. A: Chem. 252, 120–124 (2006)

    CAS  Article  Google Scholar 

  39. 39.

    W. Liu, Y. Yu, L. Cao, G. Su, X. Liu, L. Zhang, Y. Wang, J. Hazard. Mater. 181, 1102–1108 (2010)

    CAS  Article  Google Scholar 

  40. 40.

    T. Preethi, B. Abarna, K.N. Vidhya, G.R. Rajarajeswarin, Ceram. Int. 40, 13159–13167 (2014)

    CAS  Article  Google Scholar 

  41. 41.

    X. Zhu, Q. Hang, Z. Xing et al., J. Am. Ceram. Soc. 94, 2688–2693 (2011)

    CAS  Article  Google Scholar 

  42. 42.

    C. Hao, Fusheng Wen, J. Xiang et al., Mater. Res. Bull. 50, 369–373 (2014)

    CAS  Article  Google Scholar 

  43. 43.

    H.H. Mohamed, D.W. Bahnemann, Appl. Catal. B Environ. 128, 91–104 (2012)

    CAS  Article  Google Scholar 

  44. 44.

    C. Karunakaran, S. Kalaivani, P. Vinayagamoorthy, S. Dash, Mater. Sci. Semicond. Process. 21, 122–131 (2014)

    CAS  Article  Google Scholar 

  45. 45.

    C. Li, G. Chen, J. Sun, Y. Feng et al., Appl. Catal. B Environ. 163, 415–423 (2015)

    CAS  Article  Google Scholar 

  46. 46.

    C. Li, G. Chen, J. Sun, H. Dong et al., Appl. Catal. B Environ. 160–161, 383–389 (2014)

    Article  Google Scholar 

  47. 47.

    C. Yu, K. Yang, J.C. Yu, F. Cao, X. Li, X. Zho, J. Alloys Compounds 50, 4547–4552 (2011)

    Article  Google Scholar 

  48. 48.

    Y. Qu, W. Zhou, Z. Ren, S. Du, X. Meng et al., J. Mater. Chem. 22, 16471–16476 (2012)

    CAS  Article  Google Scholar 

Download references

Acknowledgments

We wish to thank the Universidad Autónoma de Nuevo León (UANL) for its invaluable support through the Project PAICYT 2012 and to CONACYT for support the Project “CB2013 No. 220792”, Grant “Retención No. 206863”, “CB2013 No. 220802” and SEP for support of Project PROMEP/103.5/13/6644 UANL-PTC-744.

Author information

Affiliations

Authors

Corresponding author

Correspondence to D. B. Hernández-Uresti.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sánchez-Martínez, D., Hernández-Uresti, D.B., Torres-Martinez, L.M. et al. Photocatalytic properties of BiVO4 synthesized by microwave-assisted hydrothermal method under simulated sunlight irradiation. Res Chem Intermed 41, 8839–8854 (2015). https://doi.org/10.1007/s11164-015-1932-6

Download citation

Keywords

  • BiVO4
  • Microwave-assisted hydrothermal method
  • Heterogeneous photocatalysis
  • Tetracycline