Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Photocatalytic properties of BiVO4 synthesized by microwave-assisted hydrothermal method under simulated sunlight irradiation

  • 492 Accesses

  • 13 Citations

Abstract

BiVO4 with monoclinic-type structure were successfully synthesized by microwave-assisted hydrothermal method (BiMH) and hydrothermal reaction (BiH500) in aqueous medium. The materials were characterized by X-ray diffraction, scanning electron microscopy, Barrett–Emmett–Teller technique, diffuse reflectance spectroscopy, and UV–Vis spectroscopy. The photocatalytic activity of samples was evaluated by the degradation of different pollutants such as xanthene (rhodamine B), indigoids (indigo carmine), and antibiotics (tetracycline) under simulated sun-light irradiation. The relation among surface area, morphology, particle size, charge recombination, and photocatalytic performance of the powders was also discussed. The degradation of the antibiotic solution (TC) over BiVO4 photocatalyst was quickly reached for with half-life time (t 1/2) minor than 12 min. On the other hand, in the case of organic dyes (RhB and IC) the best results were t 1/2 = 79 and 150 min under simulated sun-light irradiation, respectively. BiVO4, had a good stability, did not present photocorroded under irradiation. The degree of mineralization of the organic compounds was determined by total organic content (TOC) analysis, which revealed that mineralization by the action of BiMH is feasible in 83 % (RhB), 58 % (IC), and 50 % (TC) after 96 h of irradiation.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    N.M. Roden, E.V. Sargent, G.T. DiFerdinando Jr, Hum. Ecol. Risk Assess. Int. J. 21(1), 280–295 (2015)

  2. 2.

    A.K. Venkatesan, R.U. Halden, Sci. Rep. 4, 3731 (2014)

  3. 3.

    C.G. Daughton, T.A. Ternes, Environ. Health Perspect. 107, 907–938 (1999)

  4. 4.

    A.J. Watkinson, E.J. Murbyc, S.D. Costanzoa, Water Res. 41, 4164–4176 (2007)

  5. 5.

    S. Xia, R. Jia, F. Feng, K. Xie, H. Li, D. Jing, X. Xu, Bioresour. Technol. 106, 36–43 (2012)

  6. 6.

    B. Li, T. Zhang, Chemosphere 83, 1284–1289 (2011)

  7. 7.

    S. Sarkar, S. Ali, L. Rehmann et al., J. Hazard. Mater. 278, 16–24 (2014)

  8. 8.

    I. Michael, E. Hapeshi, C. Michael, A.R. Varela et al., Water Res. 46, 5621–5634 (2012)

  9. 9.

    E.S. Elmolla, M. Chaudhuri, Desalination 272, 218–224 (2011)

  10. 10.

    J. Choi, H. Lee, Y. Choi, S. Kim et al., Appl. Catal. B Environ. 147, 8–16 (2014)

  11. 11.

    S.G. Kumar, L.G. Devi, J. Phys. Chem. A 115, 13211–13241 (2011)

  12. 12.

    Z. Liu, X. Dong, Z. Liu, Q. Liu, Adv. Mater. Res. 807, 402–409 (2013)

  13. 13.

    M. Takeuchi, M. Matsuoka, M. Anpo, Res. Chem. Intermed. 38(6), 1261–1277 (2011)

  14. 14.

    H. Trabelsi, M. Khadhraouia, O. Hentatia, M. Ksibia, Toxicol. Environ. Chem. 95, 543–555 (2013)

  15. 15.

    J.B. Joo, Q. Zhang, M. Dahl, I. Lee, J. Goebl, F. Zaera, Y. Yin, Energy Environ. Sci. 5, 6321–6327 (2012)

  16. 16.

    C. Gómez-Solís, D. Sánchez-Martínez, I. Juárez-Ramírez, A. Martínez-de la Cruz, L.M. Torres-Martínez, J. Photochem. Photobiol. A Chem. 262, 28–33 (2013)

  17. 17.

    F. Zhang, K. Maeda, T. Takata, T. Hisatomi, K. Domen, Catal. Today 185, 253–258 (2012)

  18. 18.

    Y. Zhang, Y. Zhu, J. Yu, D. Yang, T.W. Ng, P.K. Wong, C.Y. Jimmy, Nanoscale 5, 6307–6310 (2013)

  19. 19.

    Y. Cheng, J. Chen, X. Yan, Z. Zheng, Q. Xue, RSC Adv. 3, 20606–20612 (2013)

  20. 20.

    R.L. Frost, D.A. Henry, M.L. Weier, W. Martens, J. Raman Spectrosc. 37, 722–732 (2006)

  21. 21.

    M. Dragomir, I. Arčona, S. Gardonio, M. Valant, Acta Mater. 61, 1126–1135 (2013)

  22. 22.

    W. Yin, W. Wang, L. Zhou, S. Sun, L. Zhang, J. Hazard. Mater. 173, 194–199 (2010)

  23. 23.

    B Cheng, W Wang, L Shi, J Zhang, J Ran, H Yu (2012) Int J Photoenergy. Article ID 797968

  24. 24.

    S. Mozia, A. Heciak, A.W. Morawski, Appl. Catal. B Environ. 104, 21–29 (2011)

  25. 25.

    J. Hou, Y. Qu, D. Krsmanovic, C. Ducati, D. Eder, R.V. Kumar, J. Mater. Chem. 20, 2418–2423 (2012)

  26. 26.

    M. Shang, W. Wang, J. Ren, S. Sun, L. Zhang, CrystEngComm. 12, 1754–1758 (2010)

  27. 27.

    J. Yu, Y. Zhang, A. Kudo, J. Solid State Chem. 182, 223–228 (2009)

  28. 28.

    Y. Liu, J. Ma, Z. Liu, C. Dai, Z. Song, Y. Sun, J. Fang, J. Zhao, Ceram. Int. 36, 2073–2077 (2010)

  29. 29.

    S. Obregón, A. Caballero, G. Colón, Appl. Catal. B Environ. 117–118, 59–66 (2012)

  30. 30.

    Y. Shi, C. Zhu, L. Wang, C. Zhao, W. Li, K.K. Fung, T. Ma, A. Hagfeldt, N. Wang, Chem. Mater. 25, 1000–1012 (2013)

  31. 31.

    L. Ma, W.-H. Lia, J.-H. Luo, Mater. Lett. 102–103, 65–67 (2013)

  32. 32.

    W. Shi, Y. Yan, X. Yan, Chem. Eng. J. 215–216, 740–746 (2013)

  33. 33.

    L. Zhang, G. Tan, S. Wei, H. Ren, A. Xia, Y. Luo, Ceram. Int. 39, 8597–8604 (2013)

  34. 34.

    G. Tan, L. Zhang, H. Ren, J. Huang, W. Yang, A. Xia, Ceram. Int. 40, 8597–8604 (2014)

  35. 35.

    G. Tan, L. Zhang, H. Ren, S. Wei, J. Huang, A. Xia, ACS Appl. Mater. Interfaces 5, 5186–5193 (2013)

  36. 36.

    D.B. Hernández-Uresti, A. Martínez-de la Cruz, J.A. Aguilar-Garib, Catal. Today 212, 70–74 (2013)

  37. 37.

    M. Oshikiri, M. Boero, J. Ye, Z. Zou, G. Kido, J. Chem. Phys. 117, 7313–7318 (2002)

  38. 38.

    L. Zhou, W. Wang, S. Liu, L. Zhang, H. Xu, W. Zhu, J. Mol. Catal. A: Chem. 252, 120–124 (2006)

  39. 39.

    W. Liu, Y. Yu, L. Cao, G. Su, X. Liu, L. Zhang, Y. Wang, J. Hazard. Mater. 181, 1102–1108 (2010)

  40. 40.

    T. Preethi, B. Abarna, K.N. Vidhya, G.R. Rajarajeswarin, Ceram. Int. 40, 13159–13167 (2014)

  41. 41.

    X. Zhu, Q. Hang, Z. Xing et al., J. Am. Ceram. Soc. 94, 2688–2693 (2011)

  42. 42.

    C. Hao, Fusheng Wen, J. Xiang et al., Mater. Res. Bull. 50, 369–373 (2014)

  43. 43.

    H.H. Mohamed, D.W. Bahnemann, Appl. Catal. B Environ. 128, 91–104 (2012)

  44. 44.

    C. Karunakaran, S. Kalaivani, P. Vinayagamoorthy, S. Dash, Mater. Sci. Semicond. Process. 21, 122–131 (2014)

  45. 45.

    C. Li, G. Chen, J. Sun, Y. Feng et al., Appl. Catal. B Environ. 163, 415–423 (2015)

  46. 46.

    C. Li, G. Chen, J. Sun, H. Dong et al., Appl. Catal. B Environ. 160–161, 383–389 (2014)

  47. 47.

    C. Yu, K. Yang, J.C. Yu, F. Cao, X. Li, X. Zho, J. Alloys Compounds 50, 4547–4552 (2011)

  48. 48.

    Y. Qu, W. Zhou, Z. Ren, S. Du, X. Meng et al., J. Mater. Chem. 22, 16471–16476 (2012)

Download references

Acknowledgments

We wish to thank the Universidad Autónoma de Nuevo León (UANL) for its invaluable support through the Project PAICYT 2012 and to CONACYT for support the Project “CB2013 No. 220792”, Grant “Retención No. 206863”, “CB2013 No. 220802” and SEP for support of Project PROMEP/103.5/13/6644 UANL-PTC-744.

Author information

Correspondence to D. B. Hernández-Uresti.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sánchez-Martínez, D., Hernández-Uresti, D.B., Torres-Martinez, L.M. et al. Photocatalytic properties of BiVO4 synthesized by microwave-assisted hydrothermal method under simulated sunlight irradiation. Res Chem Intermed 41, 8839–8854 (2015). https://doi.org/10.1007/s11164-015-1932-6

Download citation

Keywords

  • BiVO4
  • Microwave-assisted hydrothermal method
  • Heterogeneous photocatalysis
  • Tetracycline