Skip to main content

Synthesis and chemoinformatics analysis of N-aryl-β-alanine derivatives

Abstract

Carbohydrazides of N-substituted β-amino acids exhibit a variety of different biological activities including antibacterial, antiviral, fungicidal, antihelminthic, anticancer, antiinflammatory, etc. New potentially biologically active N-(4-iodophenyl)-β-alanine derivatives, N-(4-iodophenyl)-N-carboxyethyl-β-alanine derivatives, and their cyclization products were designed and synthesized. To determine the most propitious directions for further investigation of the obtained compounds, we tried to appraise their biological activity in silico using the ChemSpider and chemical structure lookup service (CSLS), chemical similarity assessment (Integrity and SuperPred), and machine learning methods [prediction of activity spectra for substances (PASS)]. No useful hints on potential biological activity of the obtained novel compounds were delivered by ChemSpider, CSLS, Integrity or SuperPred. In contrast, PASS predicted some biological activities that could be verified experimentally. Neither antibacterial nor antifungal activity was predicted for the compounds under study despite these actions being known for compounds from this chemical class. Evaluation of antibacterial (Escherichia coli B-906, Staphylococcus aureus 209-P, and Mycobacterium luteum B-91) and antifungal (Candida tenuis VKM Y-70 and Aspergillus niger F-1119) activities in vitro did not reveal any significant antimicrobial action, which corresponds to the computational prediction. Advantages and shortcomings of chemical similarity and machine learning techniques in computational assessment of biological activities are discussed. Based on the obtained results, we conclude that academic organic chemistry studies could provide a significant impact on drug discovery due to the novelty and diversity of the designed and synthesized compounds; however, practical utilization of this potential is narrowed by the limited facilities for assaying biological activities.

This is a preview of subscription content, access via your institution.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. E. Juaristi, A. Soloshonok, Enantioselective synthesis of β-aminoacids (Wiley, New York, 2005)

    Book  Google Scholar 

  2. K. Anusevičius, I. Jonuškienė, V. Mickevičius, Monatsh. Chem. 144, 1883 (2013)

    Article  Google Scholar 

  3. S. Pelosi Jr., US Pat. 1976/3980689, Dec.14 (1976)

  4. T. Aboul-Fadl, A.R. Khallil, Arzneim. Forsch. 53, 526 (2003)

    CAS  Google Scholar 

  5. V. Mickevicius, A. Voskienė, I. Jonuskienė et al., Molecules 18, 15000 (2013)

    CAS  Article  Google Scholar 

  6. I. Jonuskiene, S. Kuusiene, V. Mickevicius, Chem. Technol. 49, 53 (2008)

    Google Scholar 

  7. H. Habashita, M. Terakado, S. Nakade, T. Seko, US Patent 2005/0256160 A1. 17 Nov 2005

  8. S. Dekeukeleire, M. D’hooghe, K.W. Turnroos, N. De Kimpe, J. Org. Chem. 75, 5934 (2010)

    CAS  Article  Google Scholar 

  9. I. Ojima, S. Inaba, M. Nagai, Synthesis 7, 545 (1981)

    Article  Google Scholar 

  10. S. Kanwar, S.D. Sharma, ChemInform 37, 11 (2006)

    Google Scholar 

  11. V. Mickevicius, R. Vaickelioniene, G. Mikulskiene, N. Sewald, Chem. Heterocycl. Compd. 6, 874 (2005)

    Google Scholar 

  12. K. Anusevičius, I. Jonuskienė, V. Mickevicius, Monatsh. Chem. 144, 1883 (2013)

    Article  Google Scholar 

  13. V.K. Tiwari, N. Tewary, D. Katiyjar, R.P. Tripathi, Monatsh. Chem. 138, 1297 (2007)

    CAS  Article  Google Scholar 

  14. R. Vaickelioniene, V. Mickevicius, G. Mikulskiene, Molecules 10, 407 (2005)

    CAS  Article  Google Scholar 

  15. R. Patino-Molina, I. Cubero-Lajo, M.J. Perez de Vega, M.T. Garcia Lopez, R. Gonzalez-Muniz, Tetrahedron Lett. 48, 3613 (2007)

    CAS  Article  Google Scholar 

  16. J.R. Merchant, D.S. Clothia, J. Chem. Soc. Perkin Trans. 1, 932 (1972)

    Article  Google Scholar 

  17. O. Prakash, D. Kumar, R.K. Saini, S.P. Singh, Synth. Commun. 15, 2167 (1994)

    Article  Google Scholar 

  18. V. Novikovaite, Z.J. Beresnevicius, G. Mikulskiene, Chem. Heterocycl. Compd. 43(1), 113 (2007)

    CAS  Article  Google Scholar 

  19. I. Tumosienė, K. Jonuskienė, Z. Kantminienė, J. Beresnevicius, Monatsh. Chem. 143, 1441 (2012)

    Article  Google Scholar 

  20. K. Anusevicius, V. Mickevicius, G. Mikulskiene, Chemija 21, 127 (2010)

    CAS  Google Scholar 

  21. A.S. Anees, A. Amit, N. Sidqui, M. Amit, Indian J. Chem. Sect. B 44, 838 (2005)

    Google Scholar 

  22. H. Bektaş, N. Karaali, D. Şahin, A. Demirbaş, Ş.A. Karaoglu, N. Demirbaş, Molecules 15, 2427 (2010)

    Article  Google Scholar 

  23. W.L. Jorgensen, Science 303, 1813 (2004)

    CAS  Article  Google Scholar 

  24. L.W. Tari, Structure-based drug discovery. Methods Mol. Biol. 841, 1–385 (2012)

    CAS  Article  Google Scholar 

  25. K. Heikamp, J. Bajorath, Chem. Biol. Drug Des. 81, 33 (2013)

    CAS  Article  Google Scholar 

  26. K. Anusevicius, R. Vaickelioniene, V. Mickevicius, G. Mikulskiene, J. Heterocycl. Chem. 50, 309 (2013)

    CAS  Article  Google Scholar 

  27. http://www.accelrys.com. Accessed 2014

  28. http://www.chemspider.com. Accessed 2014

  29. http://www.cactus.nci.nih.gov/cgi-bin/lookup/search. Accessed 2014

  30. http://www.integrity.thomson-pharma.com. Accessed 2014

  31. Y.C. Martin, J.L. Kofron, L.M. Traphagen, J. Med. Chem. 45, 4350 (2002)

    CAS  Article  Google Scholar 

  32. http://www.bioinformatics.charite.de/superpred. Accessed 2014

  33. M. Dunkel, S. Günther, J. Ahmed, B. Wittig, R. Preissner, Nucleic Acids Res. 36, W55 (2008)

    CAS  Article  Google Scholar 

  34. C. Steinbeck, C. Hoppe, S. Kuhn, M. Floris, R. Guha, E.L. Willighagen, Curr. Pharm. Des. 12, 2111 (2006)

    CAS  Article  Google Scholar 

  35. http://www.way2drug.com/passonline. Accessed 2014

  36. D.A. Filimonov, V.V. Poroikov, in Chemoinformatics approaches to virtual screening, ed. by A. Varnek, A. Tropsha (RSC Publishing, Cambridge, 2008), pp. 182–216

    Chapter  Google Scholar 

  37. D. Filimonov, V. Poroikov, Yu. Borodina, T. Gloriozova, J. Chem. Inf. Comput. Sci. 39, 666 (1999)

    CAS  Article  Google Scholar 

  38. A. Lagunin, A. Stepanchikova, D. Filimonov, V. Poroikov, Bioinformatics 16, 747 (2000)

    CAS  Article  Google Scholar 

  39. A. Sadym, A. Lagunin, D. Filimonov, V. Poroikov, SAR QSAR Environ. Res. 14, 339 (2003)

    CAS  Article  Google Scholar 

  40. A. Geronikaki, D. Druzhilovsky, A. Zakharov, V. Poroikov, SAR QSAR Environ. Res. 19, 27 (2008)

    CAS  Article  Google Scholar 

  41. V. Poroikov, A. Lagunin, D. Filimonov, in QSAR and molecular modelling in rational design of bioactive molecules, ed. by E. Aki Sener, I. Yalcin (CADD & D Society, Ankara, 2005), pp. 514–515

    Google Scholar 

  42. A. Geronikaki, V. Poroikov, D. Hadjipavlou-Litina, D. Filimonov, A. Lagunin, R. Mgonzo, Quant. Struct. Activ. Relationsh. 18, 16 (1999)

    CAS  Article  Google Scholar 

  43. M.J. Walport, N. Engl, J. Med. 344, 1058 (2001)

    CAS  Google Scholar 

  44. M.J. Walport, N. Engl, J. Med. 344, 1140 (2001)

    CAS  Google Scholar 

  45. W.C. Song, M.R. Sarrias, J.D. Lambris, Immunopharmacology 49, 187 (2000)

    CAS  Article  Google Scholar 

  46. E. Munthe, H.M. Hoyeraal, S.S. Froland, O.J. Mellbye, E. Kess, J.B. Natvig, Rheumatology 6, 43 (1975)

    CAS  Google Scholar 

  47. S. Ruddy, K.F. Austen, Ann. N.Y. Acad. Sci. 256, 96 (1975)

    CAS  Article  Google Scholar 

  48. O. Radillo, A. Nocera, A. Leprini, S. Barocci, T.E. Mollnes, M. Pocecco, M. Pausa, U. Valente, C. Betterle, F. Tedesco, Clin. Immunol. Immunopathol. 79, 217 (1996)

    CAS  Article  Google Scholar 

  49. S.J. Piddlesden, S. Jiang, J.L. Levin, A. Vincent, B.P. Morgan, J. Neuroimmunol. 71, 173 (1996)

    CAS  Article  Google Scholar 

  50. L.H. Perrin, P.H. Lambert, P.A. Miescher, J. Clin. Invest. 56, 165 (1975)

    CAS  Article  Google Scholar 

  51. M. Chrupcala, S. Pomer, G. Staehler, R. Waldherr, C. Kirschfink, Transpl. Int. 7, 650 (1994)

    Article  Google Scholar 

  52. B.G. Hoffstrom, A. Kaplan, R. Letso, R. Schmid, G.J. Turmel, D.C. Lo, B.R. Stockwell, Nat. Chem. Biol. 6, 900 (2010)

    CAS  Article  Google Scholar 

  53. S. Madhusudan, I.D. Hickson, Trends Mol. Med. 11, 503 (2005)

    CAS  Article  Google Scholar 

  54. M. Allary, J. Schrevel, I. Florent, Parasitology 125, 1 (2002)

    CAS  Article  Google Scholar 

  55. M. Flipo, T. Beghyn, V. Leroux, I. Florent, B.P. Deprez, R.F. Deprez-Poulain, J. Med. Chem. 50, 1322 (2007)

    CAS  Article  Google Scholar 

  56. R.B. Gennis, B. Barquera, B. Hacker, D.S.R. Van, S. Arnaud, A.R. Crofts, E. Davidson, K.A. Gray, F. Daldal, J. Bioenerg. Biomembr. 25, 195 (1993)

    CAS  Article  Google Scholar 

  57. E. Darrouzet, M. Valkova-Valchanova, T. Ohnishi, F. Daldal, J. Bioenerg. Biomembr. 31, 275 (1999)

    CAS  Article  Google Scholar 

  58. S. Ouchane, I. Agalidis, C. Astier, J. Bacteriol. 184, 3815 (2002)

    CAS  Article  Google Scholar 

  59. S.O. Pember, L.C. Fleck, W.K. Moberg, M.P. Walker, Arch. Biochem. Biophys. 435, 280 (2005)

    CAS  Article  Google Scholar 

  60. Performance Standards for Antimicrobial Disk Susceptibility Tests; Approved Standard-11th edn, Clinical and Laboratory Standards Institute, Wayne, Pennsylvania, (2012)

  61. Method for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard-9th edn, Clinical and Laboratory Standards Institute, Wayne, Pennsylvania, (2012)

  62. J. Frearson, P. Wyatt, Expert Opin. Drug Discov. 5, 909 (2010)

    Article  Google Scholar 

  63. W. Rhodes, J. Transl. Med. 10(Suppl 2), A42 (2012)

    Article  Google Scholar 

  64. D.M. Huryn, L.O. Resnick, P. Wipf, J. Med. Chem. 56, 7161 (2013)

    CAS  Article  Google Scholar 

  65. S. Ekins, B.A. Bunin, Methods Mol. Biol. 993, 139 (2013)

    CAS  Article  Google Scholar 

  66. L. Esser, B. Quinn, Y. Li, M. Zhang, M. Elberry, L. Yu, C.A. Yu, D. Xia, J. Mol. Biol. 341, 281 (2004)

    CAS  Article  Google Scholar 

  67. V.V. Poroikov, D.A. Filimonov, J. Comput. Aid. Molec. Des. 11, 819 (2002)

    Article  Google Scholar 

  68. A.A. Lagunin, O.A. Gomazkov, D.A. Filimonov, T.A. Gureeva, E.A. Dilakyan, E.V. Kugaevskaya, YuE Elisseeva, N.I. Solovyeva, V.V. Poroikov, J. Med. Chem. 46, 3326 (2003)

    CAS  Article  Google Scholar 

  69. A.A. Geronikaki, A.A. Lagunin, D.I. Hadjipavlou-Litina, PhT Eleftheriou, D.A. Filimonov, V.V. Poroikov, I. Alam, A.K. Saxena, J. Med. Chem. 51, 1601 (2008)

    CAS  Article  Google Scholar 

  70. S.A. Kryzhanovskii, R.M. Salimov, A.A. Lagunin, D.A. Filimonov, T.A. Gloriozova, V.V. Poroikov, Pharm. Chem. J. 45, 605 (2012)

    CAS  Article  Google Scholar 

  71. A. Lagunin, D.A. Filimonov, V.V. Poroikov, Curr. Pharm. Des. 16, 1703 (2010)

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was performed with partial financial support of the State Fund for Fundamental Research of Ukraine (agreement F53/97-2013) and the Russian Foundation for Basic Research (projects 13-04-90425, 12-07-00597).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryna Stasevych.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2693 kb)

Supplementary material 2 (DOC 98 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Anusevicius, K., Mickevicius, V., Stasevych, M. et al. Synthesis and chemoinformatics analysis of N-aryl-β-alanine derivatives. Res Chem Intermed 41, 7517–7540 (2015). https://doi.org/10.1007/s11164-014-1841-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-014-1841-0

Keywords

  • N-Aryl-β-alanines
  • Organic synthesis
  • Antibacterial and antifungal activity
  • Biological potential
  • Computational predictions
  • Drug discovery in academia