Research on Chemical Intermediates

, Volume 41, Issue 10, pp 7517–7540 | Cite as

Synthesis and chemoinformatics analysis of N-aryl-β-alanine derivatives

  • Kazimieras Anusevicius
  • Vytautas Mickevicius
  • Maryna Stasevych
  • Victor Zvarych
  • Olena Komarovska-Porokhnyavets
  • Volodymyr Novikov
  • Olga Tarasova
  • Tatyana Gloriozova
  • Vladimir Poroikov
Article

Abstract

Carbohydrazides of N-substituted β-amino acids exhibit a variety of different biological activities including antibacterial, antiviral, fungicidal, antihelminthic, anticancer, antiinflammatory, etc. New potentially biologically active N-(4-iodophenyl)-β-alanine derivatives, N-(4-iodophenyl)-N-carboxyethyl-β-alanine derivatives, and their cyclization products were designed and synthesized. To determine the most propitious directions for further investigation of the obtained compounds, we tried to appraise their biological activity in silico using the ChemSpider and chemical structure lookup service (CSLS), chemical similarity assessment (Integrity and SuperPred), and machine learning methods [prediction of activity spectra for substances (PASS)]. No useful hints on potential biological activity of the obtained novel compounds were delivered by ChemSpider, CSLS, Integrity or SuperPred. In contrast, PASS predicted some biological activities that could be verified experimentally. Neither antibacterial nor antifungal activity was predicted for the compounds under study despite these actions being known for compounds from this chemical class. Evaluation of antibacterial (Escherichia coli B-906, Staphylococcus aureus 209-P, and Mycobacterium luteum B-91) and antifungal (Candida tenuis VKM Y-70 and Aspergillus niger F-1119) activities in vitro did not reveal any significant antimicrobial action, which corresponds to the computational prediction. Advantages and shortcomings of chemical similarity and machine learning techniques in computational assessment of biological activities are discussed. Based on the obtained results, we conclude that academic organic chemistry studies could provide a significant impact on drug discovery due to the novelty and diversity of the designed and synthesized compounds; however, practical utilization of this potential is narrowed by the limited facilities for assaying biological activities.

Keywords

N-Aryl-β-alanines Organic synthesis Antibacterial and antifungal activity Biological potential Computational predictions Drug discovery in academia 

Supplementary material

11164_2014_1841_MOESM1_ESM.doc (2.6 mb)
Supplementary material 1 (DOC 2693 kb)
11164_2014_1841_MOESM2_ESM.doc (98 kb)
Supplementary material 2 (DOC 98 kb)

References

  1. 1.
    E. Juaristi, A. Soloshonok, Enantioselective synthesis of β-aminoacids (Wiley, New York, 2005)CrossRefGoogle Scholar
  2. 2.
    K. Anusevičius, I. Jonuškienė, V. Mickevičius, Monatsh. Chem. 144, 1883 (2013)CrossRefGoogle Scholar
  3. 3.
    S. Pelosi Jr., US Pat. 1976/3980689, Dec.14 (1976)Google Scholar
  4. 4.
    T. Aboul-Fadl, A.R. Khallil, Arzneim. Forsch. 53, 526 (2003)Google Scholar
  5. 5.
    V. Mickevicius, A. Voskienė, I. Jonuskienė et al., Molecules 18, 15000 (2013)CrossRefGoogle Scholar
  6. 6.
    I. Jonuskiene, S. Kuusiene, V. Mickevicius, Chem. Technol. 49, 53 (2008)Google Scholar
  7. 7.
    H. Habashita, M. Terakado, S. Nakade, T. Seko, US Patent 2005/0256160 A1. 17 Nov 2005Google Scholar
  8. 8.
    S. Dekeukeleire, M. D’hooghe, K.W. Turnroos, N. De Kimpe, J. Org. Chem. 75, 5934 (2010)CrossRefGoogle Scholar
  9. 9.
    I. Ojima, S. Inaba, M. Nagai, Synthesis 7, 545 (1981)CrossRefGoogle Scholar
  10. 10.
    S. Kanwar, S.D. Sharma, ChemInform 37, 11 (2006)Google Scholar
  11. 11.
    V. Mickevicius, R. Vaickelioniene, G. Mikulskiene, N. Sewald, Chem. Heterocycl. Compd. 6, 874 (2005)Google Scholar
  12. 12.
    K. Anusevičius, I. Jonuskienė, V. Mickevicius, Monatsh. Chem. 144, 1883 (2013)CrossRefGoogle Scholar
  13. 13.
    V.K. Tiwari, N. Tewary, D. Katiyjar, R.P. Tripathi, Monatsh. Chem. 138, 1297 (2007)CrossRefGoogle Scholar
  14. 14.
    R. Vaickelioniene, V. Mickevicius, G. Mikulskiene, Molecules 10, 407 (2005)CrossRefGoogle Scholar
  15. 15.
    R. Patino-Molina, I. Cubero-Lajo, M.J. Perez de Vega, M.T. Garcia Lopez, R. Gonzalez-Muniz, Tetrahedron Lett. 48, 3613 (2007)CrossRefGoogle Scholar
  16. 16.
    J.R. Merchant, D.S. Clothia, J. Chem. Soc. Perkin Trans. 1, 932 (1972)CrossRefGoogle Scholar
  17. 17.
    O. Prakash, D. Kumar, R.K. Saini, S.P. Singh, Synth. Commun. 15, 2167 (1994)CrossRefGoogle Scholar
  18. 18.
    V. Novikovaite, Z.J. Beresnevicius, G. Mikulskiene, Chem. Heterocycl. Compd. 43(1), 113 (2007)CrossRefGoogle Scholar
  19. 19.
    I. Tumosienė, K. Jonuskienė, Z. Kantminienė, J. Beresnevicius, Monatsh. Chem. 143, 1441 (2012)CrossRefGoogle Scholar
  20. 20.
    K. Anusevicius, V. Mickevicius, G. Mikulskiene, Chemija 21, 127 (2010)Google Scholar
  21. 21.
    A.S. Anees, A. Amit, N. Sidqui, M. Amit, Indian J. Chem. Sect. B 44, 838 (2005)Google Scholar
  22. 22.
    H. Bektaş, N. Karaali, D. Şahin, A. Demirbaş, Ş.A. Karaoglu, N. Demirbaş, Molecules 15, 2427 (2010)CrossRefGoogle Scholar
  23. 23.
    W.L. Jorgensen, Science 303, 1813 (2004)CrossRefGoogle Scholar
  24. 24.
    L.W. Tari, Structure-based drug discovery. Methods Mol. Biol. 841, 1–385 (2012)CrossRefGoogle Scholar
  25. 25.
    K. Heikamp, J. Bajorath, Chem. Biol. Drug Des. 81, 33 (2013)CrossRefGoogle Scholar
  26. 26.
    K. Anusevicius, R. Vaickelioniene, V. Mickevicius, G. Mikulskiene, J. Heterocycl. Chem. 50, 309 (2013)CrossRefGoogle Scholar
  27. 27.
    http://www.accelrys.com. Accessed 2014
  28. 28.
  29. 29.
  30. 30.
  31. 31.
    Y.C. Martin, J.L. Kofron, L.M. Traphagen, J. Med. Chem. 45, 4350 (2002)CrossRefGoogle Scholar
  32. 32.
  33. 33.
    M. Dunkel, S. Günther, J. Ahmed, B. Wittig, R. Preissner, Nucleic Acids Res. 36, W55 (2008)CrossRefGoogle Scholar
  34. 34.
    C. Steinbeck, C. Hoppe, S. Kuhn, M. Floris, R. Guha, E.L. Willighagen, Curr. Pharm. Des. 12, 2111 (2006)CrossRefGoogle Scholar
  35. 35.
  36. 36.
    D.A. Filimonov, V.V. Poroikov, in Chemoinformatics approaches to virtual screening, ed. by A. Varnek, A. Tropsha (RSC Publishing, Cambridge, 2008), pp. 182–216CrossRefGoogle Scholar
  37. 37.
    D. Filimonov, V. Poroikov, Yu. Borodina, T. Gloriozova, J. Chem. Inf. Comput. Sci. 39, 666 (1999)CrossRefGoogle Scholar
  38. 38.
    A. Lagunin, A. Stepanchikova, D. Filimonov, V. Poroikov, Bioinformatics 16, 747 (2000)CrossRefGoogle Scholar
  39. 39.
    A. Sadym, A. Lagunin, D. Filimonov, V. Poroikov, SAR QSAR Environ. Res. 14, 339 (2003)CrossRefGoogle Scholar
  40. 40.
    A. Geronikaki, D. Druzhilovsky, A. Zakharov, V. Poroikov, SAR QSAR Environ. Res. 19, 27 (2008)CrossRefGoogle Scholar
  41. 41.
    V. Poroikov, A. Lagunin, D. Filimonov, in QSAR and molecular modelling in rational design of bioactive molecules, ed. by E. Aki Sener, I. Yalcin (CADD & D Society, Ankara, 2005), pp. 514–515Google Scholar
  42. 42.
    A. Geronikaki, V. Poroikov, D. Hadjipavlou-Litina, D. Filimonov, A. Lagunin, R. Mgonzo, Quant. Struct. Activ. Relationsh. 18, 16 (1999)CrossRefGoogle Scholar
  43. 43.
    M.J. Walport, N. Engl, J. Med. 344, 1058 (2001)Google Scholar
  44. 44.
    M.J. Walport, N. Engl, J. Med. 344, 1140 (2001)Google Scholar
  45. 45.
    W.C. Song, M.R. Sarrias, J.D. Lambris, Immunopharmacology 49, 187 (2000)CrossRefGoogle Scholar
  46. 46.
    E. Munthe, H.M. Hoyeraal, S.S. Froland, O.J. Mellbye, E. Kess, J.B. Natvig, Rheumatology 6, 43 (1975)Google Scholar
  47. 47.
    S. Ruddy, K.F. Austen, Ann. N.Y. Acad. Sci. 256, 96 (1975)CrossRefGoogle Scholar
  48. 48.
    O. Radillo, A. Nocera, A. Leprini, S. Barocci, T.E. Mollnes, M. Pocecco, M. Pausa, U. Valente, C. Betterle, F. Tedesco, Clin. Immunol. Immunopathol. 79, 217 (1996)CrossRefGoogle Scholar
  49. 49.
    S.J. Piddlesden, S. Jiang, J.L. Levin, A. Vincent, B.P. Morgan, J. Neuroimmunol. 71, 173 (1996)CrossRefGoogle Scholar
  50. 50.
    L.H. Perrin, P.H. Lambert, P.A. Miescher, J. Clin. Invest. 56, 165 (1975)CrossRefGoogle Scholar
  51. 51.
    M. Chrupcala, S. Pomer, G. Staehler, R. Waldherr, C. Kirschfink, Transpl. Int. 7, 650 (1994)CrossRefGoogle Scholar
  52. 52.
    B.G. Hoffstrom, A. Kaplan, R. Letso, R. Schmid, G.J. Turmel, D.C. Lo, B.R. Stockwell, Nat. Chem. Biol. 6, 900 (2010)CrossRefGoogle Scholar
  53. 53.
    S. Madhusudan, I.D. Hickson, Trends Mol. Med. 11, 503 (2005)CrossRefGoogle Scholar
  54. 54.
    M. Allary, J. Schrevel, I. Florent, Parasitology 125, 1 (2002)CrossRefGoogle Scholar
  55. 55.
    M. Flipo, T. Beghyn, V. Leroux, I. Florent, B.P. Deprez, R.F. Deprez-Poulain, J. Med. Chem. 50, 1322 (2007)CrossRefGoogle Scholar
  56. 56.
    R.B. Gennis, B. Barquera, B. Hacker, D.S.R. Van, S. Arnaud, A.R. Crofts, E. Davidson, K.A. Gray, F. Daldal, J. Bioenerg. Biomembr. 25, 195 (1993)CrossRefGoogle Scholar
  57. 57.
    E. Darrouzet, M. Valkova-Valchanova, T. Ohnishi, F. Daldal, J. Bioenerg. Biomembr. 31, 275 (1999)CrossRefGoogle Scholar
  58. 58.
    S. Ouchane, I. Agalidis, C. Astier, J. Bacteriol. 184, 3815 (2002)CrossRefGoogle Scholar
  59. 59.
    S.O. Pember, L.C. Fleck, W.K. Moberg, M.P. Walker, Arch. Biochem. Biophys. 435, 280 (2005)CrossRefGoogle Scholar
  60. 60.
    Performance Standards for Antimicrobial Disk Susceptibility Tests; Approved Standard-11th edn, Clinical and Laboratory Standards Institute, Wayne, Pennsylvania, (2012)Google Scholar
  61. 61.
    Method for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard-9th edn, Clinical and Laboratory Standards Institute, Wayne, Pennsylvania, (2012)Google Scholar
  62. 62.
    J. Frearson, P. Wyatt, Expert Opin. Drug Discov. 5, 909 (2010)CrossRefGoogle Scholar
  63. 63.
    W. Rhodes, J. Transl. Med. 10(Suppl 2), A42 (2012)CrossRefGoogle Scholar
  64. 64.
    D.M. Huryn, L.O. Resnick, P. Wipf, J. Med. Chem. 56, 7161 (2013)CrossRefGoogle Scholar
  65. 65.
    S. Ekins, B.A. Bunin, Methods Mol. Biol. 993, 139 (2013)CrossRefGoogle Scholar
  66. 66.
    L. Esser, B. Quinn, Y. Li, M. Zhang, M. Elberry, L. Yu, C.A. Yu, D. Xia, J. Mol. Biol. 341, 281 (2004)CrossRefGoogle Scholar
  67. 67.
    V.V. Poroikov, D.A. Filimonov, J. Comput. Aid. Molec. Des. 11, 819 (2002)CrossRefGoogle Scholar
  68. 68.
    A.A. Lagunin, O.A. Gomazkov, D.A. Filimonov, T.A. Gureeva, E.A. Dilakyan, E.V. Kugaevskaya, YuE Elisseeva, N.I. Solovyeva, V.V. Poroikov, J. Med. Chem. 46, 3326 (2003)CrossRefGoogle Scholar
  69. 69.
    A.A. Geronikaki, A.A. Lagunin, D.I. Hadjipavlou-Litina, PhT Eleftheriou, D.A. Filimonov, V.V. Poroikov, I. Alam, A.K. Saxena, J. Med. Chem. 51, 1601 (2008)CrossRefGoogle Scholar
  70. 70.
    S.A. Kryzhanovskii, R.M. Salimov, A.A. Lagunin, D.A. Filimonov, T.A. Gloriozova, V.V. Poroikov, Pharm. Chem. J. 45, 605 (2012)CrossRefGoogle Scholar
  71. 71.
    A. Lagunin, D.A. Filimonov, V.V. Poroikov, Curr. Pharm. Des. 16, 1703 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Kazimieras Anusevicius
    • 1
  • Vytautas Mickevicius
    • 1
  • Maryna Stasevych
    • 2
  • Victor Zvarych
    • 2
  • Olena Komarovska-Porokhnyavets
    • 2
  • Volodymyr Novikov
    • 2
  • Olga Tarasova
    • 3
  • Tatyana Gloriozova
    • 3
  • Vladimir Poroikov
    • 3
  1. 1.Kaunas University of TechnologyKaunasLithuania
  2. 2.Lviv Polytechnic National UniversityLvivUkraine
  3. 3.Orekhovich Institute of Biomedical ChemistryMoscowRussia

Personalised recommendations