Research on Chemical Intermediates

, Volume 40, Issue 9, pp 3287–3293 | Cite as

Immobilization of photosystem I or II complexes on electrodes for preparation of photoenergy-conversion devices

  • Masaharu KondoEmail author
  • Mizuki Amano
  • Takashi Joke
  • Shuichi Ishigure
  • Tomoyasu Noji
  • Takehisa Dewa
  • Yutaka Amao
  • Mamoru NangoEmail author


Photosystems, PSI and PSII isolated from Thermosynechococcus elongatus were successfully immobilized on a TiO2 nanostructured film for use in dye-sensitized biosolar cells (DSBCs). The photosystem complexes were also immobilized on an ITO electrode modified with 3-aminopropyltriethoxysilane by utilizing the interactions between the electrode and the surface of the PSI or PSII polypeptide. Illumination of the PSI and PSII complexes immobilized on the ITO electrode resulted in action spectra in the presence of methyl viologen, which corresponded to the absorption spectra of the complexes. Compared with the ITO electrode, PSI or PSII complexes assembled on the TiO2 electrode had much higher energy-conversion efficiency in the presence of an iodide/triiodide redox system of an ionic-liquid-based electrolyte. This could have interesting applications in the development of DSBCs.


Photosystem Electrode Photoenergy conversion 



The authors are grateful to Professor Keisuke, Kawakami, Professor Nobuo Kamiya (OCARINA, Osaka-City University, Japan, Professor Ayumi Tanaka (Institute of Low Temperature Science, Hokkaido University, Japan), and Professor Miwa Sugiura (Department of Science, Ehime University, Japan) for isolation and purification of the PSI and PSII complexes and for helpful advice and discussion. This work was partially supported by JSPS KAKENHI Grant Number 25810097, the AOARD Funds for the Development of Human Resources in Science and Technology, and the TATEMATSU Foundation.


  1. 1.
    R.E. Blankenship, M.T. Madigan, C.E. Bauer, Anoxygenic photosynthetic bacteria (Kluwer Academic Publishers, Dordrecht, 1995)CrossRefGoogle Scholar
  2. 2.
    A.W. Roszak, T.D. Howard, J. Southall, A.T. Gardiner, C.J. Law, N.W. Isaacs, R.J. Cogdell, Science 2003, 302 (1969)Google Scholar
  3. 3.
    M. Kondo, Y. Nakamura, K. Fujii, M. Nagata, Y. Suemori, T. Dewa, K. Iida, A.T. Gardiner, R.J. Cogdell, M. Nango, Biomacromolecules 8, 2457 (2007)CrossRefGoogle Scholar
  4. 4.
    Y. Suemori, K. Fujii, M. Ogawa, Y. Nakamura, K. Shinohara, K. Nakagawa, M. Nagata, K. Iida, T. Dewa, K. Yamashita, M. Nangoa, Colloids Surf. B. 56, 182 (2007)CrossRefGoogle Scholar
  5. 5.
    Y. Suemori, M. Nagata, Y. Nakamura, K. Nakagawa, A. Okuda, J.-I. Inagaki, K. Shinohara, M. Ogawa, K. Iida, T. Dewa, K. Yamashita, A. Gardiner, R.J. Cogdell, M. Nango, Photosyn. Res. 90, 17 (2006)CrossRefGoogle Scholar
  6. 6.
    E. Katz, J. Electroanal. Chem. 365, 157 (1994)CrossRefGoogle Scholar
  7. 7.
    R. Das, P.J. Kiley, M. Segal, J. Norville, A. AmyYu, L. Wang, S.A. Trammell, L. Evan Reddick, R. Kumar, F. Stellacci, N. Lebedev, J. Schnur, B.D. Bruce, S. Zhang, M. Baldo, Nano Lett. 4, 1079 (2012)CrossRefGoogle Scholar
  8. 8.
    I. Carmeli, L. Frolov, C. Carmeli, S. Richer, J. Am. Chem. Soc. 129, 12352 (2007)CrossRefGoogle Scholar
  9. 9.
    J. Mary, J. Krejci, M. Ilie, L. Jakubka, J. Masojidek, R. Pilloton, K. Sameh, P. Steffan, Z. Stryhal, M. Sugiura, Anal. Bioanal. Chem. 381, 1558 (2005)CrossRefGoogle Scholar
  10. 10.
    A. Mershin, K. Matsumoto, L. Kaiser, D. Yu, M. Vaughn, Md.K. Nazeeruddin, B.D. Bruce, M. Gräetzel, S. Zhang, Sci. Rep. 2(234), 1 (2012)Google Scholar
  11. 11.
    M. Kato, T. Cardona, A.W. Ratherford, E. Reisner, J. Am. Chem. Soc. 134, 8332–8335 (2012)CrossRefGoogle Scholar
  12. 12.
    M. Kato, T. Cardona, A.W. Ratherford, E. Reisner, J. Am. Chem. Soc. 135, 10610–10613 (2013)CrossRefGoogle Scholar
  13. 13.
    Y. Umena, K. Kawakami, J.-R. Shen, N. Kamiya, Nature 473, 55 (2011)CrossRefGoogle Scholar
  14. 14.
    M. Ogawa, R. Kanda, T. Dewa, K. Iida, M. Nango, Chem. Lett. 466 (2002)Google Scholar
  15. 15.
    M. Nagata, M. Amano, T. Joke, K. Fujii, A. Okuda, M. Kondo, S. Ishigure, T. Dewa, K. Iida, F. Secundo, Y. Amao, H. Hashimoto, M. Mamoru, ACS Macro Lett. 296 (2012)Google Scholar
  16. 16.
    P. Jordan, P. Fromme, H.T. Witt, O. Klukas, W. Saenger, N. Krauss, Nature 411, 909 (2001)CrossRefGoogle Scholar
  17. 17.
    F. Sauvage, D. Chen, P. Comte, F. Huang, L.-P. Heiniger, Y.-B. Cheng, R.A. Caruso, M. Gräetzel, ACS Nano 4, 4420 (2010)CrossRefGoogle Scholar
  18. 18.
    M. Gräetzel, Acc. Chem. Res. 42, 1788–1798 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Masaharu Kondo
    • 1
    Email author
  • Mizuki Amano
    • 2
  • Takashi Joke
    • 2
  • Shuichi Ishigure
    • 2
  • Tomoyasu Noji
    • 2
  • Takehisa Dewa
    • 2
  • Yutaka Amao
    • 3
  • Mamoru Nango
    • 2
    • 3
    Email author
  1. 1.Center for Fostering Young and Innovative ResearchersNagoya Institute of TechnologyNagoyaJapan
  2. 2.Materials Science and EngineeringNagoya Institute of TechnologyNagoyaJapan
  3. 3.OCARINAOsaka City UniversityOsakaJapan

Personalised recommendations