Skip to main content
Log in

A theoretical study on C–H bond dissociation enthalpies of oxygen-containing fused heterocyclic compounds

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The C–H bond dissociation enthalpies (BDEs) of 27 N, O, S-containing mono-heterocyclic compounds were assessed by the composite high-level ab initio methods G4 and G3B3. After comparing the theoretical C–H BDEs of 32 N, O, S-containing heterocyclic compounds by using 10 density functional theory methods with experimental ones, we found that the BMK method provided the lowest root of mean square error of 7.2 kJ/mol. Subsequently, we calculated the C–H BDEs of oxygen-containing fused heterocyclic compounds at different positions by the BMK method. The results indicated that there are large BDE differences between the C(sp 3)–H bonds. In order to find the essence of the C–H BDE differences, NBO and molecular orbital analyses were conducted. In addition, the substituent effects on C–H BDEs in oxygen-containing fused heterocyclic compounds were discussed. Finally, we found two linear relationships between the BDEs and qO/e in the oxygen-containing fused heterocyclic compounds for different substituents, and the corresponding correlation coefficient squares (R 2) were 0.8551 and 0.9379, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. C.X. Yuan, Y. Liang, T. Hernandez, A. Berriochoa, K.N. Houk, D. Siegel, Nature 499, 192 (2013)

    Article  CAS  Google Scholar 

  2. R. Samanta, K. Matcha, A.P. Antonchick, Eur. J. Org. Chem. 2013, 5769 (2013)

    Article  CAS  Google Scholar 

  3. H. Yu, S. Su, C. Zhang, Z. Dang, Chin. J. Org. Chem. 33, 1628 (2013)

    Article  CAS  Google Scholar 

  4. D. Li, C. He, H. Cai, G. Wang, Chin. J. Org. Chem. 33, 203 (2013)

    Article  Google Scholar 

  5. J.W. Delord, T. Dröge, F. Liu, F. Glorius, Chem. Soc. Rev. 40, 4740 (2011)

    Article  Google Scholar 

  6. K.H. Kim, H.S. Lee, S.H. Kim, J.N. Kim, Tetrahedron Lett. 53, 2761 (2012)

    Article  CAS  Google Scholar 

  7. S.M. Guo, B. Qian, Y.J. Xie, C.G. Xia, H.M. Huang, Org. Lett. 13, 522 (2011)

    Article  CAS  Google Scholar 

  8. B. Xiao, T.J. Gong, Z.J. Liu, J.H. Liu, D.F. Luo, J. Xu, L. Liu, J. Am. Chem. Soc. 133, 9250 (2011)

    Article  CAS  Google Scholar 

  9. K.C. Pereira, A.L. Porter, S. Potavathri, A.P. LeBris, B. DeBoef, Tetrahedron 69, 4429 (2013)

    Article  CAS  Google Scholar 

  10. C. Martin, P. Mailliet, J. Maddaluno, Org. Lett. 2, 923 (2000)

    Article  CAS  Google Scholar 

  11. N. Yang, Q.H. Wang, W.Q. Wang, J. Wang, F. Li, S.P. Tan, M.S. Cheng, Bioorg. Med. Chem. Lett. 22, 53 (2012)

    Article  Google Scholar 

  12. L. Zhang, J.H. Cheng, T.S. Ohishi, Z.M. Hou, Angew. Chem. Int. Ed. 49, 8670 (2010)

    Article  CAS  Google Scholar 

  13. B. Chan, L. Radom, J. Phys. Chem. A. 116, 4975 (2012)

    Article  CAS  Google Scholar 

  14. A.S. Menon, D.J. Henry, T. Bally, L. Radom, Org. Biomol. Chem. 9, 3636 (2011)

    Article  CAS  Google Scholar 

  15. J.J. Zheng, T. Yu, D.G. Truhlar, Phys. Chem. Chem. Phys. 13, 19318 (2011)

    Article  CAS  Google Scholar 

  16. T.P. Troy, N. Chalyavi, A.S. Menon, G.D. O’Connor, B. Fückel, K. Nauta, L. Radom, T.W. Schmidt, Chem. Sci. 2, 1755 (2011)

    Article  CAS  Google Scholar 

  17. B. Chan, L. Radom, J. Phys. Chem. A 117, 3666 (2013)

    Article  CAS  Google Scholar 

  18. K.L.M. Drew, J. Reynisson, Eur. J. Med. Chem. 56, 48 (2012)

    Article  CAS  Google Scholar 

  19. S.J. Blanksby, G.B. Ellison, Acc. Chem. Res. 36, 255 (2003)

    Article  CAS  Google Scholar 

  20. Y. Fu, Y. Mou, B.L. Lin, L. Liu, Q.X. Guo, J. Phys. Chem. A. 106, 12386 (2002)

    Article  CAS  Google Scholar 

  21. Y.-H. Cheng, X. Zhao, K.-S. Song, L. Liu, Q.-X. Guo, J. Org. Chem. 67, 6638 (2002)

    Article  CAS  Google Scholar 

  22. K.-S. Song, L. Liu, Q.-X. Guo, J. Org. Chem. 68, 262 (2003)

    Article  CAS  Google Scholar 

  23. L.A. Curtiss, K. Raghavachari, P.C. Redfern, V. Rassolov, J.A. Pople, J. Chem. Phys. 109, 7764 (1998)

    Article  CAS  Google Scholar 

  24. A.G. Baboul, L.A. Curtiss, P.C. Redfern, J. Chem. Phys. 110, 7650 (1999)

    Article  CAS  Google Scholar 

  25. L.A. Curtiss, P.C. Redfern, K. Raghavachari, J. Chem. Phys. 126, 084108 (2007)

    Article  Google Scholar 

  26. A.D. Becke, Phys. Rev. A 38, 3098 (1988)

    Article  CAS  Google Scholar 

  27. C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988)

    Article  CAS  Google Scholar 

  28. A.D. Boese, J.M.L. Martin, J. Chem. Phys. B. 8, 3405 (2004)

    Article  Google Scholar 

  29. J.P. Perdew, K. Burke, Y. Wang, Phys. Rev. B 54, 16533 (1996)

    Article  CAS  Google Scholar 

  30. Y. Zhao, D.G. Truhlar, J. Phys. Chem. A 108, 6908 (2004)

    Article  CAS  Google Scholar 

  31. E.E. Dahlke, D.G. Truhlar, J. Phys. Chem. B 109, 15677 (2005)

    Article  CAS  Google Scholar 

  32. X. Xu, W.A. Goddard III, Proc. Natl. Acad. Sci. USA 101, 2673 (2004)

    Article  CAS  Google Scholar 

  33. Y. Zhao, D.G. Truhlar, J. Chem. Phys. 125, 194101 (2006)

    Article  Google Scholar 

  34. Y. Zhao, D.G. Truhlar, Theor. Chem. Acc. 120, 215 (2008)

    Article  CAS  Google Scholar 

  35. Y. Zhao, D.G. Truhlar, J. Phys. Chem. A 110, 13126 (2006)

    Article  CAS  Google Scholar 

  36. J.D. Chai, M. Head-Gordon, Phys. Chem. Chem. Phys. 10, 6615 (2008)

    Article  CAS  Google Scholar 

  37. A.E. Reed, F. Curtiss, Chem. Rev. 88, 899 (1998)

    Article  Google Scholar 

  38. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F.Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Rag havachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Moroku ma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, Revision A.1, Gaussian, Wallingford CT, 2009

  39. Y.-R. Luo, Comprehensive Handbook of Chemical Bond Energies (CRC Press, Boca Raton, 2007)

    Book  Google Scholar 

  40. Y. Feng, J.-T. Wang, L. Liu, Q.-X. Guo, J. Phys. Org. Chem. 16, 883 (2003)

    Article  CAS  Google Scholar 

  41. Y.Z. Li, W. He, J.L. Yang, Prog. Chem. 17, 192 (2005)

    CAS  Google Scholar 

  42. Y. Feng, L. Liu, J.-T. Wang, S.-W. Zhao, Q.-X. Guo, J. Org. Chem. 69, 3129 (2004)

    Article  CAS  Google Scholar 

  43. X.-Q. Yao, X.-J. Hou, H.J. Jiao, H.-W. Xiang, Y.-W. Li, J. Phys. Chem. A 107, 9991 (2003)

    Article  CAS  Google Scholar 

  44. A.K. Chandra, P.-C. Nam, M.T. Nguyen, J. Phys. Chem. A 107, 9182 (2003)

    Article  CAS  Google Scholar 

  45. Y. Feng, L. Liu, J.-T. Wang, H. Huang, Q.-X. Guo, J. Chem. Inf. Comput. Sci. 43, 2005 (2003)

    Article  CAS  Google Scholar 

  46. H. Shadnia, J.S. Wright, J. Chem. Theory Comput. 5, 1129 (2009)

    Article  CAS  Google Scholar 

  47. Y. Garcia, F. Schoenebeck, C.Y. Legault, C.A. Merlic, K.N. Houk, J. Am. Chem. Soc. 131, 6632 (2009)

    Article  CAS  Google Scholar 

  48. S.W. Zhao, L. Liu, Y. Fu, Q.X. Guo, J. Phys. Org. Chem. 18, 353 (2005)

    Article  CAS  Google Scholar 

  49. M.D. Wodrich, C. Corminboeuf, P.R. Schreiner, A.A. Fokin, P.V.R. Schleyer, Org. Lett. 9, 1851 (2007)

    Article  CAS  Google Scholar 

  50. I.Y. Zhang, J.M. Wu, X. Xu, Chem. Commun. 46, 3057 (2010)

    Article  CAS  Google Scholar 

  51. X.-Q. Yao, X.-J. Hou, H.J. Jiao, H.-W. Xiang, Y.-W. Li, J. Phys. Chem. A 107, 9991 (2003)

    Article  CAS  Google Scholar 

  52. K.R. Ruddick, A.L. Parrill, R.L. Petersen, J. Chem. Edu. 89, 1358 (2012)

    Article  CAS  Google Scholar 

  53. W.R. Zheng, W.X. Xu, Y.X. Wang, Z.C. Chen, Comput. Theor. Chem. 1027, 116 (2014)

    Article  CAS  Google Scholar 

  54. L. Liu, Y. Fu, R. Liu, R.Q. Li, Q.X. Guo, J. Chem. Inf. Comput. Sci. 44, 652 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financed by the graduate research and innovation fundings (13KY0402, 14KY0403). We also thank Shanghai Supercomputer Center for the computational resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Rui Zheng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 232 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y.X., Zheng, W.R. A theoretical study on C–H bond dissociation enthalpies of oxygen-containing fused heterocyclic compounds. Res Chem Intermed 41, 7207–7225 (2015). https://doi.org/10.1007/s11164-014-1807-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-014-1807-2

Keywords

Navigation