Skip to main content
Log in

Quantitative comparisons between α, β, γ, and δ pyrazinamide (PZA) polymorphs

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The quantitative visualizations and comparisons between the four pyrazinamide (PZA) polymorphs (α, β, γ and δ) have been investigated by graphical tools based on three-dimensional Hirshfeld surfaces and two-dimensional fingerprint plots. The comparisons were performed in terms of crystal structure, d e, Shape index, Curvedness and d norm surfaces, and fingerprint plots. The results revealed that the α and γ forms featured with 1D chains and the π···π stacking motifs belong to γ-motif, rich in π···π interactions and form infinite face-to-face stacks, β and δ forms featured with dimer unit and the π···π stacking motifs belong to γ- and herringbone–motif, respectively, the herringbone motif of δ form rich in C–H···π and edge-to-face interactions. We also correlated the phase transformation points of α, β, and δ PZA forms with the ratio of the percentage surface coverage of the N–H···O hydrogen bonds over that of the N–H···N hydrogen bonds, and found a negative correlation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J. Bernstein, J.O. Henck, Cryst. Eng. 1, 119 (1998)

    Article  CAS  Google Scholar 

  2. Y.H. Luo, B.W. Sun, Cryst. Growth Des. 13(5), 2098 (2013)

    Article  CAS  Google Scholar 

  3. A. Nangia, G.R. Desiraju, Design of Organic Solids ed. by E. Weber (Springer, Berlin, 1998), p 87

  4. Y.H. Luo, W.T. Song, S.W. Ge, B.W. Sun, Polyhedron 69, 160 (2014)

    Article  CAS  Google Scholar 

  5. T. Beyer, G.M. Day, S.L.J. Price, Am. Chem. Soc. 123, 5086 (2001)

    Article  CAS  Google Scholar 

  6. Y.H. Luo, C.G. Zhang, B. Xu, B.W. Sun, CrystEngComm 14(20), 6860 (2012)

    Article  CAS  Google Scholar 

  7. J.J. McKinnon, F.P.A. Fabbiani, M.A. Spackman, Cryst. Growth Des. 7, 755 (2007)

    Article  CAS  Google Scholar 

  8. Y.H. Luo, B.W. Sun, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 126, 81 (2014)

    Article  CAS  Google Scholar 

  9. Y.H. Luo, D.E. Wu, W.T. Song, S.W. Ge, B.W. Sun, CrystEngComm 16, 5319 (2014)

    Article  CAS  Google Scholar 

  10. J. Bernstein, Polymorphism in Molecular Crystals (Clarendon Press, Oxford, 2002)

    Google Scholar 

  11. Y.H. Luo, D.E. Wu, S.W. Ge, Y. Li, B.W. Sun, RSC Adv. 4, 11698 (2014)

    Article  CAS  Google Scholar 

  12. T.R. Schneider, Acta Crystallogr. Sect. D 58, 195 (2002)

    Article  Google Scholar 

  13. M.C. Etter, J.C. MacDonald, J. Bernstein, Acta Crystallogr. Sect. B 46, 256 (1990)

    Article  Google Scholar 

  14. V.A. Blatov, Acta Crystallogr. Sect. A 62, 356 (2006)

    Article  Google Scholar 

  15. H. Zabrodsky, S. Peleg, D. Avnir, J. Am. Chem. Soc. 114, 7843 (1992)

    Article  CAS  Google Scholar 

  16. M.A. Spackman, P.G. Byrom, Chem. Phys. Lett. 267, 215 (1997)

    Article  CAS  Google Scholar 

  17. J. J. McKinnon, A. S. Mitchell, M. A. Spackman,Chem.-Eur.J., 4 (2002) 2136

  18. J.A. Chisholm, S. Motherwell, J. Appl. Crystallogr. 38, 228 (2005)

    Article  Google Scholar 

  19. V.A. Blatov, A.P. Shevchenko, V.N. Serezhkin, Zh Strukt, Khim. 34, 83 (1993)

    Google Scholar 

  20. T. Gelbrich, M.B. Hursthouse, CrystEngComm 7, 324 (2005)

    Article  CAS  Google Scholar 

  21. S.K. Wolff, D.J. Grimwood, J.J. McKinnon, D. Jayatilak, M.A. Spackman, CrystalExplorer 1.5 (University of Western Australia, Perth, Australia, 2007)

  22. G. Barr, W. Dong, C.J. Gilmore, A. Parkin, C.C. Wilson, J. Appl. Crystallogr. 38, 833 (2005)

    Article  CAS  Google Scholar 

  23. S.K. Seth, CrystEngComm 15, 1772 (2013)

    Article  CAS  Google Scholar 

  24. S.K. Seth, D. Sarkar, A.D. Jana, T. Kar, Cryst. Growth Des. 11, 4837 (2011)

    Article  CAS  Google Scholar 

  25. F.P.A. Fabbiani, L.T. Byrne, J.J. McKinnon, M.A. Spackman, CrystEngComm 9, 648 (2007)

    Article  Google Scholar 

  26. A. Parkin, G. Barr, W. Dong, C.J. Gilmore, D. Jayatilaka, J.J. McKinnon, M.A. Spackmanb, C.C. Wilsona, CrystEngComm 9, 648 (2007)

    Article  CAS  Google Scholar 

  27. Y.H. Luo, S.W. Ge, W.T. Song, B.W. Sun, New J. Chem. 38, 723 (2014)

    Article  CAS  Google Scholar 

  28. Y. Zhang, D. Mitchison, Int. J. Tuberculosis Lung Dis. 7, 6 (2003)

    CAS  Google Scholar 

  29. WHO Model List of Essential Medicines; World Health Organization: Geneva, Switzerland (2009). http://www.who.int/selection_medicines/committees/expert/17/sixteenth_adult_list_en.pdf

  30. S. Cherukuvada, R. Thakuria, A. Nangia, Crystal Growth Des. 10, 3931 (2010)

    Article  CAS  Google Scholar 

  31. R.A.E. Castro, T.M.R. Maria, A.O.L. Evora, J.C. Feiteira, M.R. Silva, A.M. Beja, J. Canotilho, M.E.S. Eusebio, Crystal Growth Des. 10, 274 (2010)

    Article  CAS  Google Scholar 

  32. A. Nangia, Acc. Chem. Res. 41, 595 (2008)

    Article  CAS  Google Scholar 

  33. A. Borba, M. Albrecht, A.G. Zavaglia, M.A. Suhm, R. Fausto, J. Phys. Chem. A 114, 151 (2010)

    Article  CAS  Google Scholar 

  34. S.K. Wolff, D.J. Grimwood, J.J. McKinnon, D. Jayatilaka, M.A. Spackman, CrystalExplorer 2.0 (University of Western Australia, Perth, Australia, 2007)

  35. A. Lemmerer, J. Bernstein, V. Kahlenberg, CrystEngComm 13, 55 (2011)

    Article  CAS  Google Scholar 

  36. P.A. Wood, J.J. McKinnon, S. Parsons, E. Pidcock, M.A. Spackman, CrystEngComm 10, 368 (2008)

    CAS  Google Scholar 

  37. G.R. Desiraju, A. Gavezzotti, Acta Crystallogr. Sect. B: Struct. Sci. 45, 473 (1989)

    Article  Google Scholar 

  38. G. R. Desiraju, A. Gavezzotti, J. Chem. Soc., Chem. Commun. 621 (1989)

  39. L. Loots, L.J. Barbour, CrystEngComm 14, 300 (2012)

    Article  CAS  Google Scholar 

  40. Y.H. Luo, B.W. Sun, CrystEngComm 15, 7490 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Scientific Research Foundation of Graduate School of Southeast University (YBJJ1340), Fundamental Research Funds for the Central Universities (CXZZ12_0119), Natural Science Foundation of China (21371031, 21241009), and Prospective Joint Research Project of Jiangsu province (BY2012193).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, YH., Liu, QL., Yang, LJ. et al. Quantitative comparisons between α, β, γ, and δ pyrazinamide (PZA) polymorphs. Res Chem Intermed 41, 7059–7072 (2015). https://doi.org/10.1007/s11164-014-1798-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-014-1798-z

Keywords

Navigation