Skip to main content

Advertisement

Log in

Aquatic photolysis of carbamazepine by UV/H2O2 and UV/Fe(II) processes

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

In this work, the degradation of carbamazepine (CBZ) in water by UV/H2O2 and UV/Fe(II), two UV-based photolysis processes, was investigated. The addition of H2O2 and Fe(II) significantly improved the CBZ decomposition rate relevant to UV treatment alone. For UV/H2O2 photolysis, CBZ photodegradation followed pseudo-first-order kinetics. The rate of CBZ degradation increased with the increase of H2O2 concentrations and the decrease of initial CBZ concentrations. CBZ oxidation rates in sea water and surface water were lower than that in pure water and the maximum CBZ degradation occurred at pH 7. Additionally, both Cl and HCO3 could inhibit the CBZ decomposition in UV/H2O2 photolysis. For the UV/Fe(II) system, CBZ photodegradation also showed pseudo-first-order kinetics. The results showed that the degradation increased as the initial Fe(II) concentration increased up to a certain limit at which Fe(II) reduced the degradation by scavenging the \(\cdot {\text{OH}}\). O2 was favorable for CBZ degradation in UV/Fe(II) process. Finally, major degradation products of CBZ, including degradation intermediates, organic acids, and inorganic ions were detected by LC/MS/MS and IC. Based on the LC/MS/MS and IC analysis, the possible degradation pathways of CBZ photolysis were proposed. Results demonstrated that UV/H2O2 and UV/Fe(II) were both potential technologies for water treatment containing CBZ. However, considering the energy consumption, UV/Fe(II) was more efficient than UV/H2O2 process for CBZ degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. C.Y. Hao, X.M. Zhao, P. Yang, Trac-Trend Anal. Chem. 26(6), 569–580 (2007)

    Article  CAS  Google Scholar 

  2. T. Kosjek, E. Heath, B. Kompare, Anal. Bioanal. Chem. 387(4), 1379–1387 (2007)

    Article  CAS  Google Scholar 

  3. T.E. Doll, F.H. Frimmel, Chemosphere 52(10), 1757–1769 (2003)

    Article  CAS  Google Scholar 

  4. B. Kasprzyk-Hordern, R.M. Dinsdale, A.J. Guwy, Water Res. 42(13), 3498–3518 (2008)

    Article  CAS  Google Scholar 

  5. Y. Yoon, J. Ryu, J. Oh, B.G. Choi, S.A. Snyder, Sci. Total Environ. 408(3), 636–643 (2010)

    Article  CAS  Google Scholar 

  6. Q. Sui, J. Huang, S. Deng, W. Chen, G. Yu, Environ. Sci. Technol. 45(8), 3341–3348 (2011)

    Article  CAS  Google Scholar 

  7. N. Gottschall, E. Topp, C. Metcalfe, M. Edwards, M. Payne, S. Kleywegt, P. Russell, D.R. Lapen, Chemosphere 87(2), 194–203 (2012)

    Article  CAS  Google Scholar 

  8. M. Clara, B. Strenn, N. Kreuzinger, Water Res. 38(4), 947–954 (2004)

    Article  CAS  Google Scholar 

  9. Y. Zhang, S.U. Geissen, C. Gal, Chemosphere 73(8), 1151–1161 (2008)

    Article  CAS  Google Scholar 

  10. T.A. Ternes, Water Res. 32, 3245–3260 (1998)

    Article  CAS  Google Scholar 

  11. K. Komori, Y. Suzuki, M. Minamiyama, A. Harada, Environ. Monit. Assess. 185, 4529–4536 (2013)

    Article  CAS  Google Scholar 

  12. J.L. Zhao, G.G. Ying, Y.S. Liu, F. Chen, J.F. Yang, L. Wang, X.B. Yang, J.L. Stauber, M.S.J. Warne, Environ. Toxicol. Chem. 29, 1377–1384 (2010)

    CAS  Google Scholar 

  13. A. Daneshvar, J. Svanfelt, L. Kronberg, M. Prevost, G.A. Weyhenmeyer, Chemosphere 80, 301–309 (2010)

    Article  CAS  Google Scholar 

  14. M. Huerta-Fontela, M. Teresa Galceran, F. Ventura, Water Res. 45, 1432–1442 (2011)

    Article  CAS  Google Scholar 

  15. S.D. Kim, J. Cho, I.S. Kim, B.J. Vanderford, S.A. Snyder, Water Res. 41, 1013–1021 (2007)

    Article  CAS  Google Scholar 

  16. D.P. Mohapatra, S.K. Brar, R.D. Tyagi, P. Picard, R.Y. Surampalli, Talanta 99, 247–255 (2012)

    Article  CAS  Google Scholar 

  17. C. Lacey, S. Basha, A. Morrissey, J.M. Tobin, Environ. Monit. Assess. 184, 1049–1062 (2012)

    Article  CAS  Google Scholar 

  18. F. Pomati, S. Castiglioni, E. Zuccato, R. Fanelli, D. Vigetti, C. Rossetti, D. Calamari, Environ. Sci. Technol. 40(7), 2442–2447 (2006)

    Article  CAS  Google Scholar 

  19. O.S. Keen, S. Baik, K.G. Linden, D.S. Aga, N.G. Love, Environ. Sci. Technol. 46(11), 6222–6227 (2012)

    Article  CAS  Google Scholar 

  20. E. De Laurentiis, S. Chiron, S. Kouras-Hadef, C. Richard, M. Minella, V. Maurino, C. Minero, D. Vione, Environ. Sci. Technol. 46(15), 8164–8173 (2012)

    Article  Google Scholar 

  21. G.M. Colonna, T. Caronna, B. Marcandalli, Dyes Pigment. 41(3), 211–220 (1999)

    Article  CAS  Google Scholar 

  22. H. Ghodbane, O. Hamdaoui, Chem. Eng. J. 160(1), 226–231 (2010)

    Article  CAS  Google Scholar 

  23. G. Xu, N. Liu, M.H. Wu, T.T. Bu, M. Zheng, Ind. Eng. Chem. Res. 52(29), 9770–9774 (2013)

    Article  CAS  Google Scholar 

  24. I. Kim, N. Yamashita, H. Tanaka, Chemosphere 77(4), 518–525 (2009)

    Article  CAS  Google Scholar 

  25. J. Deng, Y. Shao, N. Gao, S. Xia, C. Tan, S. Zhou, X. Hu, Chem. Eng. J. 222, 150–158 (2013)

    Article  CAS  Google Scholar 

  26. H. Ghodbane, O. Hamdaoui, Chem. Eng. J. 160, 226–231 (2010)

    Article  CAS  Google Scholar 

  27. A. Aleboyeh, Y. Moussa, H. Aleboyeh, Dyes Pigment. 66, 129–134 (2005)

    Article  CAS  Google Scholar 

  28. S.R. Cater, M.I. Stefan, J.R. Bolton, A. Safarzadeh-Amiri, Environ. Sci. Technol. 34(4), 659–662 (2000)

    Article  CAS  Google Scholar 

  29. L. Ge, J. Chen, X. Qiao, J. Lin, X. Cai, Environ. Sci. Technol. 43(9), 3101–3107 (2009)

    Article  CAS  Google Scholar 

  30. M. Sturini, A. Speltini, F. Maraschi, A. Profumo, L. Pretali, E. Fasani, A. Albini, Environ. Sci. Technol. 44(12), 4564–4569 (2010)

    Article  CAS  Google Scholar 

  31. S. Chiron, C. Minero, D. Vione, Environ. Sci. Technol. 40(19), 5977–5983 (2006)

    Article  CAS  Google Scholar 

  32. D. Vogna, R. Marotta, R. Andreozzi, A. Napolitano, M. d’Ischia, Chemosphere 54(4), 497–505 (2004)

    Article  CAS  Google Scholar 

  33. R.P. Qiao, N. Li, X.H. Qi, Q.S. Wang, Y.Y. Zhuang, Toxicon 45(6), 745–752 (2005)

    Article  CAS  Google Scholar 

  34. N. Daneshvar, N. Daneshvar, Y. Zorriyeh Asghar, J. Hazard. Mater. 139(2), 275–279 (2007)

    Article  CAS  Google Scholar 

  35. F. Mendez-Arriaga, S. Esplugas, J. Gimenez, Water Res. 44(2), 589–595 (2010)

    Article  CAS  Google Scholar 

  36. R. Andreozzi, I. Di Somma, R. Marotta, G. Pinto, A. Pollio, D. Spasiano, Water Res. 45(5), 2038–2048 (2011)

    Article  CAS  Google Scholar 

  37. E.C. Catalkaya, F. Sengul, J. Hazard. Mater. 128(2–3), 201–207 (2006)

    Article  CAS  Google Scholar 

  38. E. Mvula, M.N. Schuchmann, C. von Sonntag, J. Chem. Soc. Perkin Trans. 2(3), 264–268 (2001)

    Article  Google Scholar 

  39. L. Hu, H.M. Martin, O. Arcs-Bulted, M.N. Sugihara, K.A. Keatlng, T.J. Strathmann, Environ. Sci. Technol. 43(2), 509–515 (2009)

    Article  CAS  Google Scholar 

  40. M.H. Wu, N. Liu, G. Xu, J. Ma, L. Tang, L. Wang, H.Y. Fu, Radiat. Phys. Chem. 80, 420–425 (2011)

    Article  CAS  Google Scholar 

  41. N. El Hassan, A. Ikni, J.-M. Gillet, A. Spasojevic-de Biré, N.E. Ghermani, Cryst. Growth Des. 13(7), 2887–2896 (2013)

    Article  Google Scholar 

  42. J.R. Bolton, M.I. Stefan, Res. Chem. Intermed. 28, 857–870 (2002)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support provided by National Natural Science Foundation of China (Nos. 11305099, 11025526, 11175112. and 41473108), Program for Changjiang Scholars and Innovative Research Team in University (No. IRT 13078) and Project supported by Science and Technology Commission of Shanghai Municipality (No. 13230500600).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ning Liu or Minghong Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, N., Zheng, M., Sijak, S. et al. Aquatic photolysis of carbamazepine by UV/H2O2 and UV/Fe(II) processes. Res Chem Intermed 41, 7015–7028 (2015). https://doi.org/10.1007/s11164-014-1795-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-014-1795-2

Keywords

Navigation