Skip to main content
Log in

An efficient method for synthesis of 3-arylbenzo[f]quinoline-1,2-dicarboxylates catalyzed by SnCl2

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

A wide variety of 3-arylbenzo[f]quinoline-1,2-dicarboxylates and their dehydro derivatives have been synthesized by one-pot, three-component reaction of an aromatic aldehyde, naphthalene-2-amine, and dimethyl but-2-ynedioate in the presence of SnCl2 under reflux in acetonitrile. This procedure has several advantages, for example high yield, short reaction time, easy work-up, little pollution, and low price of the catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2

Similar content being viewed by others

References

  1. I. Domling, Angew. Chem. Int. Ed. 39, 3168 (2000)

    Article  CAS  Google Scholar 

  2. I. Ugi, Adv. Synth. Catal. 339, 499 (1997)

    CAS  Google Scholar 

  3. N.K. Terret, M. Gardener, D.W. Gordon, R.J. Kobylecki, J. Steele, Tetrahedron 51, 8135 (1995)

    Article  Google Scholar 

  4. A.T. Khan, T. Parvin, L.H. Choudury, J. Org. Chem. 73, 8398 (2008)

  5. X.S. Wang, J. Zhou, K. Yang, C.S. Yao, Tetrahedron Lett. 51, 5721 (2010)

    Article  CAS  Google Scholar 

  6. G. Maiti, R. Karmaker, U. Kayal, Tetrahedron Lett. 54, 2920 (2013)

    Article  CAS  Google Scholar 

  7. G. Selvi, S.P. Rajendran, J. Asian Chem. 16, 1017 (2004)

    CAS  Google Scholar 

  8. R.P. Bahuguna, B.C. Joshi, Indian J. Heterocycl. Chem. 3, 265 (1994)

    CAS  Google Scholar 

  9. B.A. Carr, M.R. Franklin, Xenobiotica 28, 949 (1998)

    Article  CAS  Google Scholar 

  10. H.T. Le, J.G. Lamb, M.R. Franklin, J. Biochem. Toxicol. 11, 297 (1996)

    Article  CAS  Google Scholar 

  11. R.P. Bahuguna, B.C. Joshi, H.N. Mangal, J. Indian, Chem. Soc. 69, 401 (1992)

    CAS  Google Scholar 

  12. F. S. Mikhailitsyn, N. P. Kozyreva, S. A. Rabinovich, Y. V. Maksakovskaya, I. M. Kulikovskaya, N. R. Dadasheva, M. N. Lebedeva, A. F. Bekhli, N. D. Lychko, N. A. Uvarova, Med. Parazitol. 50–53 (1992); Chem. Abstr. 117, 251317 (1992)

  13. J. Nozulak, J.M. Vigouret, A.L. Jaton, A. Hofmann, A.R. Dravid, H.P. Weber, H.O. Kalkman, M.D. Walkinshaw, J. Med. Chem. 35, 480 (1992)

    Article  CAS  Google Scholar 

  14. J. Szmuszkovicz, W.H. Darlington, P.F. Von Voigtlander, WO8804292A1. Chem. Abstr. 110, 75335 (1988)

    Google Scholar 

  15. P. Buonora, J.C. Olsen, T. Oh, Tetrahedron 57, 6099 (2001)

    Article  CAS  Google Scholar 

  16. K.A. Jørgensen, Angew. Chem. Int. Ed. 39, 3558 (2000)

    Article  Google Scholar 

  17. H. M. Hosni, W. M. Basyouni, H. A. El-Nahas, J. Chem. Res. Synop. 646 (1999)

  18. J. W. Daly, T. F. Spande, in Alkaloids: Chemical and Biological Perspectives, ed. by S. W. Pelletier (Wiley: New York, NY.4, 1, 1986)

  19. G. B. Fodor, B. Colasanti, in Alkaloids: Chemical and Biological Perspectives, ed. by S.W. Pelletier, (Wiley: New York, NY. 3, 1, 1983)

  20. D.L. Boger, M. Patel, Prog. Heterocycl. Chem. 1, 1 (1989)

    Article  Google Scholar 

  21. H. Suschitzky, E. F. V. Scriven (eds.), (Pergamon: New York, NY, 1, 1, 1989)

  22. T. Kametani, S. Hibino, Adv. Heterocycl. Chem. 42, 246 (1987)

    Google Scholar 

  23. G. Bhargava, C. Mohan, M.P. Mahajan, Tetrahedron 64, 3017 (2008)

    Article  CAS  Google Scholar 

  24. K. Takasu, N. Shindoh, H. Tokuyama, M. Ihara, Tetrahedron 62, 11900 (2006)

    Article  CAS  Google Scholar 

  25. R.D.R.S. Manian, J. Jayashankaran, R. Ramesh, R. Raghunathan, Tetrahedron Lett. 47, 7571 (2006)

    Article  CAS  Google Scholar 

  26. J.S. Yadav, B.V.S. Reddy, G. Kondaji, S. Sowjanya, K. Nagaiah, Mol. Catal. A. Chem. 258, 361 (2006)

    Article  CAS  Google Scholar 

  27. A.H.G.P. Prenzel, N. Deppermann, W. Maison, Org. Lett. 8, 1681 (2006)

    Article  CAS  Google Scholar 

  28. Y. Zhou, X. Jia, R. Li, Z. Liu, Z. Liu, L. Wu, Tetrahedron Lett. 46, 8937 (2005)

    Article  CAS  Google Scholar 

  29. M. Rodŕiguez, M.E. Ochoa, R. Santillan, N. Farfán, V.J. Barba, Organomet. Chem. 690, 2975 (2005)

    Article  Google Scholar 

  30. A.-B. Garćia, C. Valdés, M.-P. Cabal, Tetrahedron Lett. 45, 4357 (2004)

    Article  Google Scholar 

  31. B. Danieli, G. Lesma, D. Passarella, P. Piacenti, A. Sacchetti, A. Silvani, A. Virdis, Tetrahedron Lett. 43, 7155 (2002)

    Article  CAS  Google Scholar 

  32. H.J. Zang, Y. Zhang, Y.M. Mo, B.W. Cheng, Synth. Commun. 41, 3207 (2011)

    Article  CAS  Google Scholar 

  33. A.A. Kudale, J.K. Kendall, D.O. Miller, J.L. Collins, G.J. Bodwell, J. Org. Chem. 73, 8437 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The project was supported by the National Natural Science Foundation of China (No. 21346001, 21406166) and the Tianjin National Natural Science Foundation (No. 11JCZDJC21300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjun Zang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Q., Zang, H., Feng, J. et al. An efficient method for synthesis of 3-arylbenzo[f]quinoline-1,2-dicarboxylates catalyzed by SnCl2 . Res Chem Intermed 41, 6967–6974 (2015). https://doi.org/10.1007/s11164-014-1791-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-014-1791-6

Keywords

Navigation