Characterization and application of Fe and iso-Ti-pillared bentonite on retention of organic matter contained in wet industrial phosphoric acid (54 %): kinetic study

Abstract

Pillared bentonites were prepared by a simple intercalation method with iron oxide and iso-propoxide titanium to improve its adsorption of organic matter (OM) contained in industrial phosphoric acid 54 % P2O5. The solid structure of raw and modified bentonite were analyzed using X-ray diffraction and transmission electronic microscopy. The effects of contact time, temperature, and the adsorbent dose were investigated. The surface area was measured via the Brunauer–Emmett–Teller isotherm. Experimental results showed that the maximum amounts of OM loaded on raw bentonite, Fe–B, and Ti–B were 55, 83.5, and 73 %, respectively. The adsorption of OM contained in industrial phosphoric acid could reach equilibrium after 90 min. The experimental data were analyzed with Langmuir, Freundlich, and Temkin isotherm models. The experimental adsorption isotherm complies with Langmuir equation model (R 2 = 0.99). The kinetic study showed that the OM adsorption is rapid and it complies with the pseudo second-order kinetic for raw and pillared bentonite, reflecting a relative affinity between pillared bentonite and OM and suggesting the occurrence of chemisorption.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. 1.

    A.A. Hanna, A.F. Ali, J. Chem. Technol. Biotechnol. 55, 205 (1992)

    CAS  Article  Google Scholar 

  2. 2.

    M. Baudu, G. Guibaud, D. Raveau, P. Lafrance, Water Qual. Res. J. 36, 631 (2001)

    CAS  Google Scholar 

  3. 3.

    A.A. El-Asmya, M.H. Serag, A.M. Mahdyb, I.M. Amin, Sep. Purif. Technol. 42, 287 (2008)

    Article  Google Scholar 

  4. 4.

    A. Mellah, S. Chegrouche, L. Setti, Int. J. Process. 41, 295 (1994)

    CAS  Article  Google Scholar 

  5. 5.

    A. Hannachi, D. Habaili, C. Chtara, A. Ratel, Sep. Purif. Technol. 55, 212 (2007)

    CAS  Article  Google Scholar 

  6. 6.

    C. Koopman, G.J. Witkamp, Sep. Sci. Technol. 34, 1273 (2002)

    Article  Google Scholar 

  7. 7.

    A. Silem, A. Boualia, A. Mellah, R. Kada, Can. J. Chem. Eng. 70, 491 (1992)

    CAS  Google Scholar 

  8. 8.

    A. Elyahyaoui, S. Bouhlassa, Appl. Radiat. Isot. 35, 921 (2001)

    Article  Google Scholar 

  9. 9.

    N.S. Awwad, A.A.M. Daifullah, S.A. El-Reefy, Chem. Eng. J. 81, 76 (2000)

    Google Scholar 

  10. 10.

    A. Bendada, A.H. Meniai, L.M. Bencheik, Chem. Eng. Technol. 24, 1273 (2001)

    Article  Google Scholar 

  11. 11.

    A.M. Daifullah, B.S. Girgis, H.M.H. Gad, Colloids Surf. 1, 235 (2004)

    Google Scholar 

  12. 12.

    C. Min-Yun, J. Ruey-Shin, J. Colloid Interface Sci. 18, 278 (2004)

    Google Scholar 

  13. 13.

    N. Dammak, N. Fakhfakh, S. Fourmentin, M. Benzina, J. Env, Chem. Eng. 1, 667 (2013)

    CAS  Google Scholar 

  14. 14.

    B. Omar, H. Mohamed, H. Khalaf, Environ. Technol. 22, 69 (2000)

    Google Scholar 

  15. 15.

    H. Zaitan, D. Bianchi, O. Achak, T. Chafik, J. Hazard. Mater. 42, 852 (2008)

    Article  Google Scholar 

  16. 16.

    J.Q. Jiang, C. Cooper, S. Ouki, Chemosphere 47, 711 (2002)

    CAS  Article  Google Scholar 

  17. 17.

    P. Bankovi, A. Milutinovi, N. Nikoli, J. Jovi–Jovi, Z. Dostani, D. Cupi, D. Lon·carevi, Russ. J. Phys. Chem. A. 4, 115 (2009)

  18. 18.

    R.C. Zielke, T.J. Pinnavaia, Clay Clay Miner. 36, 403 (1988)

    CAS  Article  Google Scholar 

  19. 19.

    A. Mellah, A. Silem, R. Kada, A. Boualia, Can. J. Appl. Spectrosc. 36, 94 (1991)

    CAS  Google Scholar 

  20. 20.

    H. Wiem, C. Chaker, B. Mourad, J. Chem. 2013, 9 (2013) Article ID 218786. doi:10.1155/2013/218786

  21. 21.

    I. Fatimah, S. Wang, C. Narsito, W. Karna, Appl. Clay Sci. 50, 588 (2010)

    CAS  Article  Google Scholar 

  22. 22.

    M.J. Martınez-Ortiz, G. Fetter, J.M. Domınguez, J.A. Melo-Banda, R. Ramos-Gomez, Microporous Mesoporous Mater. 58, 73 (2003)

    Article  Google Scholar 

  23. 23.

    B. Omar, H. Mohamad, H. Khalaf, Environ. Technol. 22, 69 (2001)

    Article  Google Scholar 

  24. 24.

    B. Mourad, A. Bellagi, Minéralogie des argiles, 2ème édition (Masson, Paris, 1982)

    Google Scholar 

  25. 25.

    M. Eloussaief, W. Hamza, N. Kallel, M. Benzina, Environ Progress DOI10.1002/ep.11609. (2012a)

  26. 26.

    I. Jarraya, S. Fourmentin, M. Benzina, S. Bouaziz, Chem. Geol. 275, 1 (2010)

    CAS  Article  Google Scholar 

  27. 27.

    M. Elk, W.H. Cheung, M. Valix, G. McKay, J. Colloid Interface Sci. 347, 290 (2010)

    Article  Google Scholar 

  28. 28.

    R.K. Rajoriya, B. Prasad, I.M. Mishra, K.L. Wasewar, Chem. Biochem. Eng. 21, 219 (2007)

    CAS  Google Scholar 

  29. 29.

    B. Khoualdia, M. Loungou, E. Elaloui, J. Arab. 1, 14 (2013)

    Google Scholar 

  30. 30.

    H. Omri, N. Harrouch Batis, Chem. Sci. Trans. 2, 357 (2013)

    CAS  Article  Google Scholar 

  31. 31.

    K.G. Bhattacharya, A. Sarma, J. Environ. Manag. 71, 217 (2004)

    Article  Google Scholar 

  32. 32.

    J. Schmltt, Z. Chen, L. iang, J.F.M. Carthy, Environ. Sci. Technol. 28, 38 (1994)

    Article  Google Scholar 

  33. 33.

    M.M. Mortland, S. Shaobai, S.A. Boyd, Clays Clay Miner. 34, 581 (1986)

    CAS  Article  Google Scholar 

  34. 34.

    D. Danae, Ch. Leodopoulos, K. Gimouhopoulos, F. Rigas, J. Colloid Interface Sci. 340, 131 (2009)

    Article  Google Scholar 

  35. 35.

    M.J.D. Low, Chem. Rev. 60, 267 (1960)

    CAS  Article  Google Scholar 

  36. 36.

    M.B. McBride, Environmental Chemistry of Soils (Oxford University Press, Oxford, 1994)

    Google Scholar 

  37. 37.

    P.W. Schindler, W. Stumm, in Aquatic Surface Chemistry, ed. by W. Stumm (Wiley, New York, 1987)

    Google Scholar 

  38. 38.

    G. Abate, J.C. Masini, Colloid Surf. 226, 25 (2003)

    CAS  Article  Google Scholar 

  39. 39.

    E.M. Murphy, J.M. Zachara, Geoderma 67, 103 (1995)

    CAS  Article  Google Scholar 

  40. 40.

    G. Sposito, The Chemistry of Soils (Oxford University Press, Oxford, 1989)

    Google Scholar 

  41. 41.

    A. Liu, R.D. Gonzalez, J. Colloids Interface Sci. 218, 225 (1999)

    CAS  Article  Google Scholar 

  42. 42.

    G. Abate, J.C. Masini, Coll. Surf. 226, 25 (2003)

    CAS  Article  Google Scholar 

  43. 43.

    P. Xianjia, L. Zhaokun, C. Futai, T. Binghui, J. Zhiping, Desalination 174, 135 (2005)

    Article  Google Scholar 

  44. 44.

    C. Richard, J. Thomas, Clays Clay Miner. 36, 403 (1988)

    Article  Google Scholar 

  45. 45.

    R. Kummert, W.J. Stumm, Colloid Interface Sci. 75, 373 (1980)

    CAS  Article  Google Scholar 

  46. 46.

    R. Mokaya, W. Jones, M.E. Davis, M.E. Whittle, I. Muter, Chemistry 3, 387 (1993)

    Google Scholar 

  47. 47.

    A. Dyer, T. Gallardo, P.A. Williams, M.J. Hudson (eds.), Recent Developments in Ion Exchange (Elsevier, Amsterdam, 1990), pp. 75–84

    Book  Google Scholar 

  48. 48.

    D.W. Breck, Zeolite Molecular Sieves: Structure Chemistry and Use (Wiley, New York, 1974)

    Google Scholar 

  49. 49.

    A. Molinard, A. Clearfieldb, H.Y. Zhu, E.F. Vansanta, Microporous Mater. 3, 109 (1994)

    CAS  Article  Google Scholar 

  50. 50.

    A.W. Marczewski, Langmuir 26, 15229 (2010)

    CAS  Article  Google Scholar 

  51. 51.

    S.J. Allen, Q. Gan, R. Matthews, P. Johnson, Bioresour. Technol. 88, 143 (2003)

    CAS  Article  Google Scholar 

  52. 52.

    O. Hocine, M. Boufatit, A. Khouider, Desalination 41, 167 (2004)

    Google Scholar 

  53. 53.

    Z. rawajfih, N. Nsour, J. Colloid Interface Sci. 2, 298 (2006)

    Google Scholar 

  54. 54.

    E. Bulut, M. Ozacar, Ayhan Sengil I Microporous Mesoporous Mater. 115, 234 (2008)

    CAS  Article  Google Scholar 

  55. 55.

    R. Zahir, N. Najwa, J. Colloid Interface Sci. 298, 39 (2006)

    Article  Google Scholar 

  56. 56.

    D.L. Zhao, S.J. Feng, C.L. Chen, S.H. Chen, D. Xub, X.K. Wang, Appl. Clay Sci. 41, 17 (2008)

    CAS  Article  Google Scholar 

  57. 57.

    Y. Nuhoglu, E. Oguz, Proc. Biochem. 1627, 38 (2003)

    Google Scholar 

  58. 58.

    N. Dammak, N. Fakhfakh, S. Fourmentin, M. Benzina, J. Environ. Chem. Eng. 1, 667 (2013)

    CAS  Article  Google Scholar 

Download references

Acknowledgments

We are grateful to the Tunisian Chemical Group (GCT), research center of Sfax. Thanks are extended to Mr. Brahim Ben Letaief, Technician in Laboratory of Atomic Absorption, ENIS-Sfax for facilitating the analysis of samples using Atomic Absorption Spectrometer (AAS). We extend our thanks to Mr. Nidhal Baccar, Technician in University of Sfax-Tunisia for his help and Miss Amina Zineeddine, Technician in industrial chemical laboratory (II), ENIS-Sfax for RX analysis provided.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wiem Hamza.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hamza, W., Chtara, C. & Benzina, M. Characterization and application of Fe and iso-Ti-pillared bentonite on retention of organic matter contained in wet industrial phosphoric acid (54 %): kinetic study. Res Chem Intermed 41, 6117–6140 (2015). https://doi.org/10.1007/s11164-014-1726-2

Download citation

Keywords

  • Pillared bentonite
  • Organic matter
  • Industrial phosphoric acid
  • MET
  • Kinetic equilibrium