Skip to main content
Log in

Preparation of acid–base bifunctional MCM-22 zeolite by ultrasonic impregnation for Knoevenagel condensation

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The CaO/HMCM-22 catalysts were prepared by an ultrasonic impregnation method and their catalytic performances in Knoevenagel condensation were investigated. The characterization results of XRD, SEM, and TPD showed that no significant structural change of MCM-22 was observed after modification by CaO with ultrasonic assistance. Ultrasonic cavitation could reduce the agglomeration between particles and improve the dispersion of CaO on the surface. With the increase of CaO loading, the strength and content of base increased, and the strength of strong acid decreased, while the amount of weak acid sites increased slightly. The catalytic performance of CaO/HMCM-22 prepared by ultrasonic impregnation is better than that of CaO/NaMCM-22 and HMCM-22 for Knoevenagel condensation reactions, which indicates that the catalysts possess both acidic and basic sites after modification. Consequently, the acid–base bifunctional catalysts prepared by the ultrasonic impregnation method maintained high catalytic activity and have improved reusability. Compared with the conventional impregnation method, the strategy developed here is simple and efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. X.F. Zhang, E.S.M. Lai, R. Martin-Aranda, K.L. Yeung, Appl. Catal. A Gen. 261, 109–118 (2004)

    Article  CAS  Google Scholar 

  2. F. Bigi, L. Chesini, R. Maggi, G. Sartori, J. Org. Chem. 64, 1033–1035 (1999)

    Article  CAS  Google Scholar 

  3. K.M. Parida, D. Rath, J. Mol. Catal. A Chem. 310, 93–100 (2009)

    Article  CAS  Google Scholar 

  4. R.W. Hein, M.J. Astle, J.R. Shelton, J. Org. Chem. 26, 4874–4878 (1961)

    Article  CAS  Google Scholar 

  5. N.B. Chu, J.Q. Wang, Y. Zhang, J.H. Yang, J.M. Lu, D.H. Yin, Chem. Mater. 22, 2757–2763 (2010)

    Article  CAS  Google Scholar 

  6. S. Laforge, D. Martin, M. Guisnet, Microporous Mesoporous Mater. 67, 235–244 (2004)

    Article  CAS  Google Scholar 

  7. P. Wu, T. Komatsu, T. Yashima, Microporous Mesoporous Mater. 22, 343–356 (1998)

    Article  CAS  Google Scholar 

  8. W.F. Zhang, J.H. Liang, Y.Q. Liu, S.F. Sun, X.Q. Ren, M. Jiang, Chin. J. Catal. 34, 559–566 (2013)

    Article  Google Scholar 

  9. A. Feller, M. Claeys, E. van Steen, J. Catal. 185, 120–130 (1999)

    Article  CAS  Google Scholar 

  10. J.P. den Breejen, J.R.A. Sietsma, H. Friedrich, J.H. Bitter, K.P. de Jong, J. Catal. 270, 146–152 (2010)

    Article  Google Scholar 

  11. H. Li, J. Zhang, H.X. Li, Catal. Commun. 8, 2212–2216 (2007)

    Article  CAS  Google Scholar 

  12. B.M. Chandra Shekara, B.S. Jai Prakash, Y.S. Bhat, J. Porous Mater. 20, 827–837 (2012)

    Article  Google Scholar 

  13. X.F. Zhou, Q.L. Chen, Y.W. Tao, H.X. Weng, Chin. J. Catal. 32, 1156–1165 (2011)

    Article  CAS  Google Scholar 

  14. C. Pirola, C.L. Bianchi, A. Di Michele, P. Diodati, D. Boffito, V. Ragaini, Ultrason. Sonochem. 17, 610–616 (2010)

    Article  CAS  Google Scholar 

  15. Y.J. Wu, X.Q. Ren, Y.D. Lu, J. Wang, Microporous Mesoporous Mater. 112, 138–146 (2008)

    Article  CAS  Google Scholar 

  16. M.E. Leonowicz, J.A. Lawton, S.L. Lawton, M.K. Rubin, Science 264, 1910–1913 (1994)

    Article  CAS  Google Scholar 

  17. L.J. Gu, D. Ma, G. Hu, J.J. Wu, H.X. Wang, C.Y. Sun, S.D. Yao, W.J. Shen, X.H. Bao, Dalton Trans. 39, 9705–9710 (2010)

    Article  CAS  Google Scholar 

  18. Y.Y. Shu, D. Ma, L.Y. Xu, Y.D. Xu, X.H. Bao, Catal. Lett. 70, 67–73 (2000)

    Article  CAS  Google Scholar 

  19. I. Ursachi, A. Vasile, A. Ianculescu, E. Vasile, A. Stancu, Mater. Chem. Phys. 130, 1251–1259 (2011)

    Article  CAS  Google Scholar 

  20. S. Nakano, D.M. Chadalavada, P.C. Bevilacqua, Science 287, 1493–1497 (2000)

    Article  CAS  Google Scholar 

  21. P.M. Kanthale, P.R. Gogate, A.B. Pandit, A.M. Wilhelm, Ultrason. Sonochem. 10, 331–335 (2003)

    Article  CAS  Google Scholar 

  22. A. Corma, V. Fornes, R.M. Martinaranda, H. Garcia, J. Primo, Appl. Catal. 59, 237–248 (1990)

    Article  CAS  Google Scholar 

  23. R. Gupta, M. Gupta, S. Paul, R. Gupta, Bull. Korean Chem. Soc. 30, 2419–2421 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We deeply appreciate the financial support from the National Basic Research Program of China (973 Program, 2009CB724701), Postdoctoral Research Funding Plan in Jiangsu Province (1001016C) and National High Technology Research and Development Program of China (863 Program, 2014AA021205).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoqian Ren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ren, X., Wang, J., Liang, J. et al. Preparation of acid–base bifunctional MCM-22 zeolite by ultrasonic impregnation for Knoevenagel condensation. Res Chem Intermed 41, 5301–5310 (2015). https://doi.org/10.1007/s11164-014-1632-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-014-1632-7

Keywords

Navigation