Skip to main content

Advertisement

Log in

A theoretical investigation of low energy band gap polymers: polythiophene systems

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Recently, the organic synthesis and electronic device applications of π-conjugated polymer-based materials with low energy band gap (below 2 eV) and high values of incident photon to current efficiency have been presented. In the present study, the physical properties of polythiophene (PTH) and its derivative systems (PTs) were investigated as π-conjugated low energy band gap polymers. Density functional theory with periodic boundary condition (PBC), the B3LYP functional, and the 6-31G(d) basis set was applied to determine their geometric and electronic structures and corresponding energies (E HOMO, E LUMO, and E g = E LUMO − E HOMO) from the monomer of thiophene and its derivatives for one-dimensional (1D) extension to polymer. The effects of 3-substitution in PTs including electron-donating (CH3–, C6H13–, OH–, Cl–, OCH3–, and CHO–) and electron-withdrawing groups (Cl–, CHO–, CN–, NO2–, CF3–, and COOH–) compared with PTH were investigated. According to the calculation results, PTs with electron-donating and electron-withdrawing substituents should exhibit red- and blue-shifts, respectively, compared with PTH. These calculation results show good agreement with experimental data and provide further information for molecular design considerations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. E. Zhou, K. Hashimoto, K. Tajima, Polymer 54, 6501–6509 (2013)

    Article  CAS  Google Scholar 

  2. M.Y. Jo, J.H. Bae, G.E. Lim, Y.E. Ha, H.E. Katz, J.H. Kim, Synth. Met. 176, 41–46 (2013)

    Article  CAS  Google Scholar 

  3. R.H. Friend, R.W. Gymer, A.B. Holmes, J.H. Burroughes, R.N. Marks, C. Taliani, D.D.C. Bradley, D.A. Dos Santos, J.L. Bredas, M. Logdlund, W.R. Salaneck, Nature 397, 121 (1999)

    Article  CAS  Google Scholar 

  4. S. Berson, S. Cecioni, M. Billon, Y. Kervella, R. de Bettignies, S. Bailly, S. Guillerez, Sol. Energy Mater. Sol. Cells 94, 699–708 (2010)

    Article  CAS  Google Scholar 

  5. H.J. Wang, Y.P. Chen, Y.C. Chen, C.P. Chen, R.H. Lee, L.H. Chan, R.J. Jeng, Polymer 53, 4091–4103 (2012)

    Article  CAS  Google Scholar 

  6. I. Riedel, J. Parisi, V. Dyakonov, P. Schilinsky, C. Waldauf, C. Brabec, Proc. SPIE 82, 5520 (2004)

    Google Scholar 

  7. E. Bundgaard, F.C. Krebs, Macromolecules 39, 2823 (2006)

    Article  CAS  Google Scholar 

  8. J. Hou, C. Yang, J. Qiao, Y. Li, Synth. Met. 150, 297 (2005)

    Article  CAS  Google Scholar 

  9. H.J. Wang, L.H. Chan, C.P. Chen, S.L. Lin, R.H. Lee, R.J. Jeng, Polymer 52, 326–338 (2011)

    Article  CAS  Google Scholar 

  10. C. Climent, D. Casanova, Chem. Phys. 423, 157–166 (2013)

    Article  CAS  Google Scholar 

  11. H.G. Flesch, R. Resel, C.R. McNeill, Org. Electron. 10, 1549–1555 (2009)

    Article  CAS  Google Scholar 

  12. J. Pei, W.L. Yu, W. Huang, A.J. Heeger, Macromolecules 33, 2462–2471 (2000)

    Article  CAS  Google Scholar 

  13. H. Saadeh, T. Goodson, L. Yu, Macromolecules 30, 4608–4612 (1997)

    Article  CAS  Google Scholar 

  14. M.E. Rincón, R.A. Guirado-López, J.G. Rodríguez-Zavala, M.C. Arenas-Arrocena, Sol. Energy Mater. Sol. Cells 87, 33–47 (2005)

    Article  Google Scholar 

  15. E. Armelin, O. Bertran, F. Estrany, R. Salvatella, C. Alemán, Eur. Polym. J. 45, 2211–2221 (2009)

    Article  CAS  Google Scholar 

  16. P. Otto, J. Ladik, Synth. Met. 36, 327–335 (1990)

    Article  CAS  Google Scholar 

  17. J.-W. van der Horst, P.A. Bobbert, M.A.J. Michels, G. Brocks, P.J. Kelly, Synth. Met. 101, 333–334 (1999)

    Article  Google Scholar 

  18. J.J. Tindale, H. Holm, M.S. Workentin, O.A. Semenikhin, J. Electroanal. Chem. 612, 219–230 (2008)

    Article  CAS  Google Scholar 

  19. H.W. Wang, B.C. Wang, W.H. Chen, M. Hayashi, J. Phys. Chem. A 112, 1783 (2008)

    Article  CAS  Google Scholar 

  20. Y.M. Chou, W.H. Chen, C.C. Liang, J. Mol. Struct. (Theochem) 894, 117–120 (2009)

    Article  CAS  Google Scholar 

  21. A.D. Becke, J. Chem. Phys. 98, 5648–5652 (1993)

    Article  CAS  Google Scholar 

  22. B. Miehlich, A. Savin, H. Stoll, H. Preuss, Chem. Phys. Lett. 157, 200–206 (1989)

    Article  CAS  Google Scholar 

  23. C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785–789 (1988)

    Article  CAS  Google Scholar 

  24. H. Cao, J. Ma, G. Zhang, Y. Jiang, Macromolecules 38, 1123 (2005)

    Article  CAS  Google Scholar 

  25. K.N. Kudin, G.E. Scuseria, Phys. Rev. B 61, 16440 (2000)

    Article  CAS  Google Scholar 

  26. C. Pisani (ed.), Lecture Notes in Chemistry, Vol. 67 (Springer, Heidelberg, 1996)

    Google Scholar 

  27. P.J. Feibelman, Phys. Rev. B 35, 2626 (1987)

    Article  CAS  Google Scholar 

  28. J.E. Jaffe, A.C. Hess, J. Chem. Phys. 105, 10983 (1996)

    Article  CAS  Google Scholar 

  29. S. Hirata, S. Iwata, J. Chem. Phys. 107, 10075 (1997)

    Article  CAS  Google Scholar 

  30. J.Q. Sun, R.J. Bartlett, J. Chem. Phys. 109, 4249 (1998)

    Google Scholar 

  31. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03, Revision C.02 (Gaussian, Wallingford, 2004)

  32. J. Ma, S. Li, Y. Liang, Macromolecules 38, 1123–1130 (2005)

    Article  Google Scholar 

  33. S. Hotta, S.D.D.V. Rughooputh, A.J. Heeger, F. Wudi, Macromolecules 20, 212–215 (1987)

    Article  CAS  Google Scholar 

  34. Y. Li, G. Vamvounis, S. Holdcroft, Macromolecules 35, 6900–6906 (2002)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the National Science Council of Taiwan for financially supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo-Cheng Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tai, CK., Yeh, PL., Chang, CC. et al. A theoretical investigation of low energy band gap polymers: polythiophene systems. Res Chem Intermed 40, 2355–2362 (2014). https://doi.org/10.1007/s11164-014-1612-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-014-1612-y

Keywords

Navigation