Skip to main content
Log in

Enhanced collective optical response of vast numbers of silver nanoparticles assembled on a microbead

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

We investigated the optical response of a huge number of silver nanoparticles (AgNPs) densely assembled on an organic microsphere, i.e., AgNP-fixed bead, under the collective phenomena of localized surface plasmons. For this purpose, various optical properties of such a AgNP-fixed bead were analyzed in aqueous solution by dark-field optical microscopy and laser Raman microscopy. In particular, in comparison with the optical spectrum of single AgNPs, significant spectral broadening and redshift were observed due to plasmonic superradiance with decreasing interparticle distance to the subnanoscale when using small binder molecules in the AgNP-fixed bead. Furthermore, we observed surface-enhanced Raman scattering and clarified the sensitivity of the signal intensity to the size of the binder molecules between the AgNPs, which can be explained based on optical response theory using a discrete integral with spherical cells. These results and discussion provide a guiding principle for broadband plasmonic light absorbers and for highly sensitive detection of small molecules and nanoscale biomaterials based on vast numbers of nanogaps produced by a bottom-up self-assembly process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S. Kawata, Near-Field Optics and Surface Plasmon Polaritons (Springer, Berlin, 2001)

    Book  Google Scholar 

  2. M.L. Brongersma, P.G. Kik, Surface Plasmon Nanophotonics (Springer, Dordrecht, 2007)

    Book  Google Scholar 

  3. H. Nakao, H. Shiigi, Y. Yamamoto, S. Tokonami, T. Nagaoka, S. Sugiyama, T. Ohtani, Nano Lett. 3, 1391 (2003)

    Article  CAS  Google Scholar 

  4. S. Tanaka, H. Hattori, S. Hidaka, N.D. Vy, T. Iida, Jpn. J. Appl. Phys. 51, 06FE16 (2012)

    Article  Google Scholar 

  5. H.A. Atwater, A. Polman, Nat. Mater. 9, 205 (2010)

    Article  CAS  Google Scholar 

  6. T. Iida, A. Nakamura, S. Hidaka, M. Tamura, T. Shiono, S. Furumiya, Appl. Phys. Lett. 103, 041108 (2013)

    Article  Google Scholar 

  7. M. Tamura, T. Iida, Nano Lett. 12, 5337 (2012)

    Article  CAS  Google Scholar 

  8. S. Ito, H. Yamauchi, M. Tamura, S. Hidaka, H. Hattori, T. Hamada, K. Nishida, S. Tokonami, T. Itoh, H. Miyasaka, T. Iida, Sci. Rep. 3, 3047 (2013)

    Google Scholar 

  9. D. Pissuwan, S.M. Valenzuela, M.B. Cortie, Trends Biotechnol. 24, 62 (2007)

    Article  Google Scholar 

  10. C. Kojima, Y. Watanabe, H. Hattori, T. Iida, J. Phys. Chem. C 115, 19091 (2011)

    Article  CAS  Google Scholar 

  11. F.-G. Bănică, Chemical Sensors and Biosensors: Fundamentals and Applications (Wiley, West Sussex, 2012)

    Google Scholar 

  12. S. Tokonami, Y. Yamamoto, H. Shiigi, T. Nagaoka, Anal. Chim. Acta 716, 76 (2012)

    Article  CAS  Google Scholar 

  13. H. Shiigi, Y. Yamamoto, H. Yakabe, S. Tokonami, T. Nagaoka, Chem. Commun. 2003, 1038 (2003)

    Article  Google Scholar 

  14. Y. Yamamoto, S. Takeda, H. Shiigi, T. Nagaoka, J. Electrochem. Soc. 154(9), D462 (2007)

    Article  CAS  Google Scholar 

  15. S. Tokonami, Y. Yamamoto, Y. Mizutani, I. Ota, H. Shiigi, T. Nagaoka, J. Electrochem. Soc. 156(12), D558 (2009)

    Article  CAS  Google Scholar 

  16. M. Scheibner, T. Schmidt, L. Worschech, A. Forchel, G. Bacher, T. Passow, D. Hommel, Nat. Phys. 3, 106 (2007)

    Article  CAS  Google Scholar 

  17. K. Miyajima, Y. Kagotani, S. Saito, M. Ashida, T. Itoh, J. Phys.: Condens. Matter 21, 195802 (2009)

    CAS  Google Scholar 

  18. T. Iida, J. Phys. Chem. Lett. 3, 332 (2012)

    Article  CAS  Google Scholar 

  19. S. Tokonami, S. Hidaka, K. Nishida, Y. Yamamoto, H. Nakao, T. Iida, J. Phys. Chem. C 117, 15247 (2013)

    Article  CAS  Google Scholar 

  20. M. Fleischmann, P.J. Hendra, A.J. McQuillan, Chem. Phys. Lett. 26, 163 (1974)

    Article  CAS  Google Scholar 

  21. Y. Wang, B. Yan, L. Chen, Chem. Rev. 113, 1391 (2013)

    Article  CAS  Google Scholar 

  22. A.S. Kumar, S.A. Khan, Z. Fan, T. Demeritte, D. Senapati, R. Kanchanapally, P.C. Ray, J. Am. Chem. Soc. 134, 8662 (2012)

    Article  Google Scholar 

  23. V.V.R. Sai, D. Gangadean, I. Niraula, J.M.F. Jabal, G. Corti, D.N. McIlroy, D. Eric Aston, J.R. Branen, P.J. Hrdlicka, J. Phys. Chem. C 115, 453 (2011)

    Article  CAS  Google Scholar 

  24. K. Ueno, S. Judkazis, V. Mizeikis, K. Sasaki, H. Misawa, J. Am. Chem. Soc. 130, 6928 (2008)

    Article  CAS  Google Scholar 

  25. T. Iida, Y. Aiba, H. Ishihara, Appl. Phys. Lett. 98, 053108 (2011)

    Article  Google Scholar 

  26. D.-K. Lim, K.-S. Jeon, J.-H. Hwang, H. Kim, S. Kwon, Y.D. Suh, J.-M. Nam, Nat. Nanotechnol. 6, 452 (2011)

    Article  CAS  Google Scholar 

  27. M. Takase, H. Ajiki, Y. Mizumoto, K. Komeda, M. Nara, H. Nabika, S. Yasuda, H. Ishihara, K. Murakoshi, Nat. Photon. 7, 550 (2013)

    Article  CAS  Google Scholar 

  28. P.B. Johnson, R.W. Christy, Phys. Rev. B 6, 4370 (1972)

    Article  CAS  Google Scholar 

  29. U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, Berlin, 1995)

    Book  Google Scholar 

  30. O.J.F. Martin, N.B. Piller, Phys. Rev. E 58, 3909 (1998)

    Article  CAS  Google Scholar 

  31. T. Iida, H. Ishihara, Phys. Rev. B 77, 245319 (2008)

    Article  Google Scholar 

  32. T. Iida, H. Ishihara, Nano-optical manipulation using resonant radiation force, in Progress in Nano-Electro-Optics VI, vol. 139, ed. by M. Ohtsu (Springer, Berlin, 2008), pp. 115–168

    Chapter  Google Scholar 

  33. G.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley Interscience, New York, 1983)

    Google Scholar 

  34. H. Ajiki, T. Tsuji, K. Kawano, K. Cho, Phys. Rev. B 66, 245322 (2002)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. H. Shiigi, Prof. T. Nagaoka, and Prof. H. Ishihara for their useful advice and kind support. A major part of this work was supported by the Special Coordination Funds for Promoting Science and Technology from MEXT [Improvement of Research Environment for Young Researchers (FY 2008-2012)], Grants-in-Aid for Exploratory Research No. 23655072 from JSPS, Grants-in-Aid for Young Researcher (A) No. 24685013, as well as a Grant-in-Aid for Scientific Research (B) No. 23310079 from JSPS.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shiho Tokonami or Takuya Iida.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tokonami, S., Nishida, K., Nishimura, Y. et al. Enhanced collective optical response of vast numbers of silver nanoparticles assembled on a microbead. Res Chem Intermed 40, 2337–2346 (2014). https://doi.org/10.1007/s11164-014-1610-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-014-1610-0

Keywords

Navigation