Skip to main content
Log in

Theory for optical assembling of anisotropic nanoparticles by tailored light fields under thermal fluctuations

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

In order to evaluate the assembling processes of arbitrary-shaped nanoparticles (NPs) by the irradiation of a tailored laser beam under thermal fluctuations, we have developed a “Light-induced-force Nano Metropolis Method (LNMM)” as a new theoretical method based on the stochastic algorithm in the energy region and the general formula of light-induced force. By using LNMM, we have investigated the change of configurations of silver NPs with anisotropic shapes under the irradiation of laser beams with various polarizations and intensity distributions (Gaussian beam and axially-symmetric vector beams) in an aqueous solution at room temperature. As a result, it has been clarified that silver NPs can be selectively arranged into a characteristic spatial configuration reflecting the properties of an irradiated laser beam (wavelength, intensity distribution, and polarization distribution), and that the assembled structures possess broadband spectra and exhibit a strong optical response to the irradiated laser beam through the optimization with the help of fluctuations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. E. Rabani, D.R. Reichman, P.L. Geissler, L.E. Brus, Nature 426, 271 (2003)

    Article  CAS  Google Scholar 

  2. P.W.K. Rothemund, Nature 440, 297 (2006)

    Article  CAS  Google Scholar 

  3. N. Kodera, D. Yamamoto, R. Ishikawa, T. Ando, Nature 468, 72 (2010)

    Article  CAS  Google Scholar 

  4. S. Scheuring, J.N. Sturgis, Science 309, 484 (2005)

    Article  CAS  Google Scholar 

  5. A. Ashkin, J.M. Dziedzic, J.E. Bjorkholm, S. Chu, Opt. Lett. 11, 288 (1986)

    Article  CAS  Google Scholar 

  6. T. Iida, H. Ishihara, Phys. Rev. Lett. 97, 117402 (2006)

    Article  Google Scholar 

  7. T. Iida, H. Ishihara, Phys. Rev. B 77, 245319 (2008)

    Article  Google Scholar 

  8. F. Hao, C.L. Nehl, J.H. Hafner, P. Nordlander, Nano Lett. 7, 729 (2007)

    Article  CAS  Google Scholar 

  9. S. Zhang, K. Bao, N.J. Halas, H. Xu, P. Nordlander, Nano Lett. 11, 1657 (2011)

    Article  CAS  Google Scholar 

  10. L.J. Sherry, S.-H. Chang, G.C. Schatz, R.P. Van Duyne, B.J. Wiley, Y. Xia, Nano Lett. 5, 2034 (2005)

    Article  CAS  Google Scholar 

  11. L.J. Sherry, R. Jin, C.A. Mirkin, G.C. Schatz, R.P. Van Duyne, Nano Lett. 6, 2060 (2006)

    Article  CAS  Google Scholar 

  12. T. Iida, J. Phys. Chem. Lett. 3, 332 (2012)

    Article  CAS  Google Scholar 

  13. S. Tokonami, S. Hidaka, K. Nishida, Y. Yamamoto, H. Nakao, T. Iida, J. Phys. Chem. C 117, 15247 (2013)

    Article  CAS  Google Scholar 

  14. S. Tokonami, Y. Yamamoto, H. Shiigi, T. Nagaoka, Anal. Chim. Acta 716, 76 (2012)

    Article  CAS  Google Scholar 

  15. J. Mitchell, Sensors 10, 7323 (2010)

    Article  CAS  Google Scholar 

  16. T. Iida, H. Ishihara, Phys. Rev. Lett. 90, 057403 (2003)

    Article  Google Scholar 

  17. K. Inaba, K. Imaizumi, K. Katayama, M. Ichimiya, M. Ashida, T. Iida, H. Ishihara, T. Itoh, Phys. Status Solidi B 243, 3829 (2006)

    Article  CAS  Google Scholar 

  18. M. Tamura, T. Iida, Nano Lett. 12, 5337 (2012)

    Article  CAS  Google Scholar 

  19. S. Ito, H. Yamauchi, M. Tamura, S. Hidaka, H. Hattori, T. Hamada, K. Nishida, S. Tokonami, T. Itoh, H. Miyasaka, T. Iida, Sci. Rep., 3047 (2013)

  20. O.J.F. Martin, N.B. Piller, Phys. Rev. E 58, 3909 (1998)

    Article  CAS  Google Scholar 

  21. T. Kim, K. Lee, M. Gong, S.-W. Joo, Langmuir 21, 9524 (2005)

    Article  CAS  Google Scholar 

  22. R. Oron, S. Blit, N. Davidson, A.A. Friesem, Z. Bomzon, E. Hasman, Appl. Phys. Lett. 77, 3322 (2000)

    Article  CAS  Google Scholar 

  23. B. Gu, Y. Cui, Opt. Exp. 20, 17684 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. T. Tsutsui, Prof. H. Ishihara, and Prof. H. Miyasaka for kind encouragement and support. Also, they thank Mr. S. Hidaka, Mr. H. Hattori, Dr. H. Yamauchi, Mr. Nishida, and Dr. T. Itoh for their fruitful discussion. This work was supported by PRESTO from the JST; a Grant-in-Aid for Scientific Research (B) No. 23310079; a Grant-in-Aid for Young Scientists (A) No. 23681023; the Grants-in-Aid for Exploratory Research No. 23655072 and No. 24654091 from the JSPS; and Special Coordination Funds for Promoting Science and Technology from the MEXT (Improvement of Research Environment for Young Researchers (FY 2008–2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takuya Iida.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tamura, M., Ito, S., Tokonami, S. et al. Theory for optical assembling of anisotropic nanoparticles by tailored light fields under thermal fluctuations. Res Chem Intermed 40, 2303–2313 (2014). https://doi.org/10.1007/s11164-014-1607-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-014-1607-8

Keywords

Navigation