Skip to main content
Log in

Preparation of chitosan nanoparticles by spray drying, and their antibacterial activity

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Chitosan nanoparticles were prepared from chitosan of different molecular weight by spray drying. The morphology of the particles was characterized by SEM, and size distribution and zeta potential were determined. The effects of chitosan solution concentration, molecular weight of chitosan, and size of the spray dryer nozzles on average size, size distribution and zeta potential of chitosan nanoparticles were investigated. The effects of chitosan nanoparticles and chitosan nanoparticles–amoxicillin complex on Staphylococcus aureus were also tested. The results showed that the average size of chitosan nanoparticles were in the range 95.5–395 nm and zeta potentials were 39.3–45.7 mV, depending on the concentration and molecular weight of the chitosan. The lower the concentration and molecular weight of the chitosan, the smaller the chitosan nanoparticles and the higher the zeta potential. Testing for antibacterial activity against S. aureus indicated that chitosan nanoparticles strongly inhibited growth of the bacteria; the minimum inhibitory concentration, 20 μg/mL, was lower than those of chitosan solution or amoxicillin. The antibacterial capacity of chitosan nanoparticles also depended on the size, zeta potential, and molecular weight of the chitosan. Complexation of chitosan nanoparticles with amoxicillin improved the antibacterial activity of amoxicillin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Rinaudo, Prog. Polym. Sci. 31, 603 (2006)

    Article  CAS  Google Scholar 

  2. R.M.N.V. Kumar, React. Funct. Polym. 46, 1 (2000)

    Article  CAS  Google Scholar 

  3. M.N. Alves, J.F. Mano, Int. J. Biol. Macromol. 43, 401 (2008)

    Article  CAS  Google Scholar 

  4. H.K. No, N.J. Park, S.H. Lee, S.P. Meyers, Int. J. Food Microbiol. 74, 65 (2002)

    Article  CAS  Google Scholar 

  5. L. Qi, Z. Xu, X. Jiang, C. Hu, X. Zou, Carbohydr. Res. 339, 2693 (2004)

    Article  CAS  Google Scholar 

  6. M.R. Avadi, A.M.M. Sadeghi, A. Tahzibi, K. Bayati, M. Pouladzadeh, M. Zohuriaan, M. Rafiee-Tehrani, Eur. Polym. J. 40, 1355 (2004)

    Article  CAS  Google Scholar 

  7. P. Sanpui, A. Murugadoss, P.V. Durga Prasad, S.S. Gosh, A. Chattopadhyay, Int. J. Food Microbiol. 124, 142 (2008)

    Article  CAS  Google Scholar 

  8. K. Xing, X.G. Chen, Y.Y. Li, C.S. Liu, C.G. Liu, D.S. Cha, H.J. Park, Carbohydr. Polym. 74, 114 (2008)

    Article  CAS  Google Scholar 

  9. Q. Li, S. Mahendra, D.Y. Lyon, L. Brunet, M.V. Liga, D. Li, P.J.J. Alvares, Water Res. 42, 4591 (2008)

    Article  CAS  Google Scholar 

  10. W. Xia, P. Liu, J. Zhang, J. Chen, Food Hydrocoll. 25, 170 (2011)

    Article  CAS  Google Scholar 

  11. D.N. Ngo, S.K. Kim, in Chitin and Chitosan Derivatives, Advances in Drug and Discovery and Developments, ed. by S.K. Kim (Taylor & Francis Group, LLC, London, 2014), pp. 201–209

    Google Scholar 

  12. W.L. Du, S.S. Niu, Y.L. Xu, Z.R. Xu, C.L. Fan, Carbohydr. Polym. 75, 385 (2009)

    Article  CAS  Google Scholar 

  13. S.A. Agnihotri, N.N. Mallikarjuna, T.M. Aminabhavi, J. Control. Release 100, 5 (2004)

    Article  CAS  Google Scholar 

  14. A.K. Anal, W.F. Stevens, C. Remunan-Lopez, Int. J. Pharm. 312, 166 (2006)

    Article  CAS  Google Scholar 

  15. E. Cevher, Z. Orhan, L. Mulazimoglu, D. Sensoy, M. Alper, A. Yildiz, Y. Ozsoy, Int. J. Pharm. 317, 127 (2006)

    Article  CAS  Google Scholar 

  16. B.N. Estevinho, F. Rocha, L. Santos, A. Alves, Trends Food Sci. Technol. 31, 138 (2013)

    Article  CAS  Google Scholar 

  17. T.P. Learoyd, J.L. Burrows, E. French, P.C. Seville, Eur. J. Pharm. Biopharm. 68, 224 (2008)

    Article  CAS  Google Scholar 

  18. A.R. Dudhani, S.L. Kosaraju, Carbohydr. Polym. 81, 243 (2010)

    Article  CAS  Google Scholar 

  19. P. de Vos, M.M. Farr, M. Spasojevic, J. Sikkema, Int. Dairy J. 20, 292 (2010)

    Article  Google Scholar 

  20. S. Jafarinejad, K. Gilani, E. Moazeni, M. Ghazi-Khansani, A.R. Najafabadi, N. Mohajel, Power Technol. 222, 65 (2012)

    Article  CAS  Google Scholar 

  21. G.A. Robert, J.G. Domzy, Makromol. Chem. 186, 1671 (1985)

    Article  Google Scholar 

  22. N.V. Sang, D.M. Hiep, N.A. Dzung, Biocatal. Agric. Biotechnol. 2, 289 (2013)

    Google Scholar 

  23. O. Kaspar, M. Jakubec, F. Stepanek, Power Technol. 240, 31 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Department of Science and Technology, Ho Chi Minh City, Viet Nam, for supporting this work (217/2013/HĐ-SKHCN). We also express our thanks to Professor Ro-Dong Park, Chonnam National University, South Korea for your gift of chitosan. This work was supported in part by a grant from the National Science Council, Taiwan (NSC 102-2313-B-032-001-MY3 and NSC 102-2621-M-032-005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to San-Lang Wang or Nguyen Anh Dzung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ngan, L.T.K., Wang, SL., Hiep, Đ.M. et al. Preparation of chitosan nanoparticles by spray drying, and their antibacterial activity. Res Chem Intermed 40, 2165–2175 (2014). https://doi.org/10.1007/s11164-014-1594-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-014-1594-9

Keywords

Navigation