Advertisement

Research on Chemical Intermediates

, Volume 40, Issue 1, pp 33–40 | Cite as

Thermal conductivity behavior of SiC–Nylon 6,6 and hBN–Nylon 6,6 composites

  • Seunggun Yu
  • Do-Kyun Kim
  • Cheolmin Park
  • Soon Man HongEmail author
  • Chong Min KooEmail author
Article

Abstract

A study was performed to determine the effect of the content and orientation of fillers on the thermal conductivity of a polymeric composite packed with hexagonal boron nitride (hBN) and silicon carbide (SiC) fillers. The thermal conductivity behavior of SiC–Nylon 6,6 and hBN–Nylon 6,6 composites was more dependent on the orientation and shape of the filler than on its thermal conductivity. The thermal conductivity of SiC–Nylon 6,6 composites with 59 % (v/v) isotropic SiC fillers increased from 0.25 to 3.83 W/m K. That of hBN–Nylon 6,6 composites with 62 % (v/v) anisotropic hBN fillers increased from 0.25 to 2.16 W/m K in the perpendicular direction whereas in the parallel direction it increased rapidly to 8.55 W/m K .

Keywords

Thermal conductivity Nylon 6,6 Silicon carbide Boron nitride Composites 

Notes

Acknowledgments

This work was supported by a grant from the Fundamental R&D Program for Technology of World Premier Materials funded by the Ministry of Knowledge Economy (MKE) and was particlly supported by the Institute for Multi-disciplinary Convergence of Materials of the Korea Institute of Science and Technology (KIST) in the Republic of Korea.

References

  1. 1.
    X. Huang, G. Liu, X. Wang, Adv. Mater. 24, 1482 (2012)CrossRefGoogle Scholar
  2. 2.
    K.M.F. Shahil, A.A. Balandin, Nano Lett. 12, 861 (2012)CrossRefGoogle Scholar
  3. 3.
    A.L. Geiger, D.P.H. Hasselman, K.Y. Donaldson, J. Mater. Sci. Lett. 12, 420 (1993)CrossRefGoogle Scholar
  4. 4.
    Y.P. Mamunya, V.V. Davydenko, P. Pissis, E.V. Lebedev, Eur. Polym. J. 38, 1887 (2002)CrossRefGoogle Scholar
  5. 5.
    W.L. Song, P. Wang, L. Cao, A. Anderson, M.J. Meaizni, A.J. Farr, Y.P. Sun, Angew. Chem. Int. Ed. 51, 6498 (2012)CrossRefGoogle Scholar
  6. 6.
    A. Yu, P. Ramesh, X. Sun, E. Bekyarova, M.E. Itkis, R.C. Haddon, Adv. Mater. 20, 4740 (2008)CrossRefGoogle Scholar
  7. 7.
    J.A. King, K.W. Tucker, B.D. Vogt, E.H. Weber, C. Quan, Polym. Compos. 20, 643 (1999)CrossRefGoogle Scholar
  8. 8.
    F. Chavarria, D.R. Paul, Polymer 45, 8501 (2004)CrossRefGoogle Scholar
  9. 9.
    C. Zhang, W.W. Tjiu, T. Liu, W.Y. Lui, I.Y. Phang, W.D. Zhang, J. Phys. Chem. B 115, 3392 (2011)CrossRefGoogle Scholar
  10. 10.
    H.W. Starkweather Jr., R.E. Brooks, J. Appl. Polym. Sci. 1, 236 (1959)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringYonsei UniversitySeoulKorea
  2. 2.Center for Materials Architecturing, Institute for Multi-Disciplinary Convergence of MaterialsKorea Institute of Science and Technology (KIST)SeoulKorea
  3. 3.Nanomaterials Science and EngineeringUniversity of Science and TechnologyDaejeonKorea

Personalised recommendations