Research on Chemical Intermediates

, Volume 41, Issue 5, pp 2991–3001 | Cite as

Fe3O4@Silica sulfuric acid core–shell composite as a novel nanomagnetic solid acid: synthesis, characterization and application as an efficient and reusable catalyst for one-pot synthesis of 3,4-dihydropyrimidinones/thiones under solvent-free conditions

  • Ali Reza KiasatEmail author
  • Jamal Davarpanah


A simple and convenient method was used to prepare Fe3O4@Silica sulfuric acid core–shell composite using Fe3O4 spheres as the core and silica sulfuric acid nanoparticles as the shell. Magnetite nanoparticles were synthesized by the co-precipitation of FeCl2 and FeCl3 in ammonia solution. To improve the chemical stability of magnetite nanoparticles, its surface engineering was successfully performed by the suitable deposition of silica onto nano-particles’ surface by the ammonia-catalyzed hydrolysis of tetraethoxysilane. Next, the SiO2 spheres served as a support for the immobilization of SO3H groups by simple mixing of the core–shell composite and chlorosulfonic acid in CH2Cl2. The resulting solid acid nanoparticles were characterized by infrared spectroscopy, scanning electron microscope, thermogravimetric analysis, and vibrating sample magnetometer. The catalytic activity of this solid acid nanocomposite was probed through one-pot synthesis of 3,4-dihydropyrimidinones via three-component couplings of aldehydes, β-diketone, and urea or thiourea under solvent-free conditions. In this reaction, Fe3O4@Silica sulfuric acid shows a highly catalytic nature, easy to handle procedure, short reaction time, recycle exploitation, and excellent isolated yields. The nanomagnetic catalyst could be readily separated from the solution via application of an external magnet, allowing straightforward recovery and reuse.


Fe3O4@Silica sulfuric acid Nanomagnetic solid acid 3,4-Dihydropyrimidinones Solvent-free 



We are grateful to the Research Council of Shahid Chamran University for financial support.


  1. 1.
    Y. Liu, S.Y. Jia, J.Y. Ran, S.H. Wu, Catal. Commun. 11, 364–367 (2010)CrossRefGoogle Scholar
  2. 2.
    Y. Liu, S.Y. Jia, Q. Wu, J.Y. Ran, W. Zhang, S.H. Wu, Catal. Commun. 12, 717–720 (2011)CrossRefGoogle Scholar
  3. 3.
    A.R. Kiasat, S. Nazari, J. Mol. Catal. A 365, 80–86 (2012)CrossRefGoogle Scholar
  4. 4.
    J. Davarpanah, A.R. Kiasat, S. Noorizadeh, M. Ghahremani, J. Mol. Catal. A 376, 78–89 (2013)CrossRefGoogle Scholar
  5. 5.
    W. Zhang, S.Y. Jia, Y. Liu, S.H. Wu, Q. Wu, Mater. Lett. 65(12), 1973–1975 (2011)CrossRefGoogle Scholar
  6. 6.
    S. Rostamizadeh, M. Azad, N. Shadjou, M. Hasanzadeh, Catal. Commun. 25, 83–91 (2012)CrossRefGoogle Scholar
  7. 7.
    N.T.S. Phan, C.W. Jones, J. Mol. Catal. A 253, 123–131 (2006)CrossRefGoogle Scholar
  8. 8.
    Y. Jiang, C. Guo, H. Xia, I. Mahmood, C. Liu, H. Liu, J. Mol. Catal. B 58, 103–109 (2009)CrossRefGoogle Scholar
  9. 9.
    S. Suganuma, K. Nakajima, M. Kitano, D. Yamaguchi, H. Kato, S. Hayashi, M. Hara, Solid State Sci. 12, 1029–1034 (2010)CrossRefGoogle Scholar
  10. 10.
    C.S. Gill, B.A. Price, C.W. Jones, J. Catal. 251, 145–152 (2007)CrossRefGoogle Scholar
  11. 11.
    M.Z. Kassaee, H. Masrouri, F. Movahedi, Appl. Catal. A 395, 28–33 (2011)CrossRefGoogle Scholar
  12. 12.
    S. Sobhani, Z.P. Parizi, N. Razavi, Appl. Catal. A 409–410, 162–166 (2011)CrossRefGoogle Scholar
  13. 13.
    P. Salehi, M. Dabiri, M.A. Zolfigol, M.A. Bodaghifard, Tetrahedron Lett. 44, 2889–2891 (2003)CrossRefGoogle Scholar
  14. 14.
    H.R. Kalita, P. Phukan, Catal. Commun. 8, 179–182 (2007)CrossRefGoogle Scholar
  15. 15.
    Z.J. Quan, Y.X. Da, Z. Zhang, X.C. Wang, Catal. Commun. 10, 1146–1148 (2009)CrossRefGoogle Scholar
  16. 16.
    M.F. Mehrjardi, A.R. Kiasat, J. Chin. Chem. Soc. 55, 1119–1124 (2008)Google Scholar
  17. 17.
    A.R. Kiasat, M.F. Mehrjardi, J. Braz. Chem. Soc. 19, 1595–1599 (2008)CrossRefGoogle Scholar
  18. 18.
    K. Niknam, B. Karami, A.R. Kiasat, Bull. Korean Chem. Soc. 26, 975–978 (2005)CrossRefGoogle Scholar
  19. 19.
    K.D. Kim, S.S. Kim, Y.H. Choa, H.T. Kim, J. Ind. Eng. Chem. 13, 1137–1141 (2007)Google Scholar
  20. 20.
    Y. Lin, H. Chen, K. Lin, B. Chen, C. Chiou, J. Environ. Sci. 23, 44–50 (2011)CrossRefGoogle Scholar
  21. 21.
    N.M. Mahmoodi, S. Khorramfar, F. Najafi, Desalination 279, 61–68 (2011)CrossRefGoogle Scholar
  22. 22.
    L. Feng, L. He, Y. Ma, Y. Wang, Mater. Chem. Phys. 116, 158–163 (2009)CrossRefGoogle Scholar
  23. 23.
    F. Bigi, S. Carloni, B. Frullanti, R. Maggi, G. Sartori, Tetrahedron Lett. 40, 3465–3468 (1999)CrossRefGoogle Scholar
  24. 24.
    D.A. Beltran, L.L. Romero, V.H.L. Corona, E.G. Zamora, G.N. Silva, Molecules 11, 731–738 (2006)CrossRefGoogle Scholar
  25. 25.
    J.C. Rodrı’guez-Domı’nguez, D. Bernardi, G. Kirsch, Tetrahedron Lett. 48, 5777–5780 (2007)CrossRefGoogle Scholar
  26. 26.
    M.M. Heravi, K. Bakhtiari, F.F. Bamoharram, Catal. Commun. 7, 373–376 (2006)CrossRefGoogle Scholar
  27. 27.
    V. Radha Rani, N. Srinivas, M. Radha Kishan, S.J. Kulkarni, K.V. Raghavan, Green Chem. 3, 305–306 (2001)CrossRefGoogle Scholar
  28. 28.
    R.J. Kalbasi, A.R. Massah, B. Daneshvarnejad, Appl. Clay. Sci. 55, 1–9 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Chemistry Department, College of ScienceShahid Chamran UniversityAhvazIran

Personalised recommendations