Research on Chemical Intermediates

, Volume 41, Issue 4, pp 2165–2200 | Cite as

Advances and new technologies applied in controlled drug delivery system

  • Fatma Bassyouni
  • Noha ElHalwany
  • Mohamed Abdel Rehim
  • Munir Neyfeh
Article

Abstract

A drug delivery system is defined as a formulation or a device that enables the introduction of a therapeutic substance into the body and improves its efficacy and safety by controlling the rate, time, and place of release of drugs in the body. This process includes the administration of the therapeutic product, the release of the active ingredients by the product, and the subsequent transport of the active ingredients across the biological membranes to the site of action. Drug delivery systems aim to improve patient compliance and convenience, such as, for example, fast-dissolving tablets. One of the most important goals of pharmaceutical science is localizing the pharmacological activity of the drug at the site of action. Drug delivery systems are molecular tools which, without undesired interactions at other sites, target a specific drug receptor. Keeping in view the advantages of the delivery system, rapidly disintegrating dosage forms have been successfully commercialized, and, because of increased patient demand, these dosage forms are expected to become more popular. Modern drug delivery technology has been made possible by advances in polymer science. These advances have resulted in polymers with unique properties. Drug delivery systems are made from a variety of organic and inorganic compounds such as polymers, lipids (liposomes, nanoemulsions, and solid–lipid nanoparticles), self-assembling amphiphilic molecules, dendrimers, and inorganic nanocrystals. In addition, hydrogels are novel delivery systems that have attracted much attention in current pharmaceutical research.

Keywords

Transdermal drug delivery Colon delivery system Liposomes Nano-capsules Carbon nanotubes Hydrogels 

References

  1. 1.
    Y.W. Chien, in Novel drug delivery systems, vol. 50, ed. by J. Swarbrick (Informa Healthcare USA, New York, 2009), p. 270Google Scholar
  2. 2.
    S.R. Parakh, A.V. Gothoskar, A review of mouth dissolving tablet technologies. Pharma Technol 27, 92–100 (2003)Google Scholar
  3. 3.
    M.E. Aulton, Pharmaceutics, the science of dosage form and design, 2nd edn. (Churchill Livingstone, London, 2002)Google Scholar
  4. 4.
    D. Brown, Drug Deliv. Technol. (2004)Google Scholar
  5. 5.
    S.P. Vyas, R.K. Khar, Niosomes. Targeted and controlled drug delivery (CBS, New Delhi, 2010), p. 259Google Scholar
  6. 6.
    R. Langer, Drug delivery and targeting. Nature 392, 5–10 (1998)Google Scholar
  7. 7.
    R. Duncan, The dawning era of polymer therapeutics. Nat Rev Drug Discov 2, 347–360 (2003)Google Scholar
  8. 8.
    R. Duncan, Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer 6, 688–701 (2006)Google Scholar
  9. 9.
    R. Gref, A. Dombb, P. Quelled, T. Blunk, R.H. Miillerd, J.M. Verbavatz, R. Langerf, Adv Drug Deliv Rev 16, 215–233 (1995)Google Scholar
  10. 10.
    T.M. Saba, Physiology and physiopatholgy of the reticuloendothelial system. Arch Intern Med 126, 1031–1052 (1970)Google Scholar
  11. 11.
    L. Illum, S.S. Davis, R.H. Miiller, E. Mak, P. West, The organ distribution and circulation time of intravenously injected colloidal carriers sterically stabilized with a block copolymer—poloxamine 908. Life Sci 40, 367–374 (1987)Google Scholar
  12. 12.
    S. Trgster, J. Kreuter, Influence of the surface properties of low contact angle surfactants on the body distribution of 14C-poly(methyl methacrylate) nanoparticles. J. Microencapsul. 9, 19–28 (1992)Google Scholar
  13. 13.
    A.L. Klibanov, K. Maruyama, V.P. Torchilin, L. Huang, Amphiphatic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett. 268, 235–237 (1990)Google Scholar
  14. 14.
    G. Blume, G. Cevc, Liposomes for the sustained drug release in vivo. Biochim. Biophys. Acta 1029, 91–97 (1990)Google Scholar
  15. 15.
    J. Senior, How do hydrophilic surfaces determine liposome fate in vivo? J. Liposome Res. 2, 307–319 (1992)Google Scholar
  16. 16.
    K. Petrak, Design and properties of particulate carriers for intravascular administration, in Pharmaceutical particulate carriers, ed. by A. Rolland (Marcel Dekker, New York, 1993)Google Scholar
  17. 17.
    T.M. Allen, The use of glycolipids and hydrophilic polymers in avoiding rapid uptake of liposomes by the mononuclear phagocyte system. Adv. Drug Deliv. Rev. 13, 285–309 (1994)Google Scholar
  18. 18.
    R.T. Liggins, H.M. Burt, Polyether–polyester diblock copolymers for the preparation of paclitaxel loaded polymeric micelle formulations. Adv. Drug Deliv. Rev. 54, 191–202 (2002)Google Scholar
  19. 19.
    G.F. Paciotti, D.G.I. Kingston, L. Tamarkin, Colloidal gold nanoparticles: a novel nanoparticle platform for developing multifunctional tumor-targeted drug delivery vectors. Drug Dev. Res. 67, 47–54 (2006)Google Scholar
  20. 20.
    A. Gabizon, H. Shmeeda, Y. Barenholz, Pharmacokinetics of pegylated liposomal doxorubicin: review of animal and human studies. Clin. Pharmacokinet. 42, 419–436 (2003)Google Scholar
  21. 21.
    C. Klumpp, K. Kostarelos, M. Prato, A. Bianco, Functionalized carbon nanotubes as emerging nanovectors for the delivery of therapeutics. Biochim. Biophys. Acta 1758, 404–412 (2006)Google Scholar
  22. 22.
    K. Letchford, H. Burt, A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes. Eur. J. Pharm. Biopharm. 65, 259–269 (2007)Google Scholar
  23. 23.
    Z. Jin, Q. Christopher, M.P. Lan, S. Benott, D. Yves, H.H. Tsung, Design of nanoparticles as drug carriers for cancer therapy. Genomics Proteomics 3, 147–158 (2006)Google Scholar
  24. 24.
    T.R. Hoare, D.S. Kohane, Hydrogels in drug delivery: progess and challenges. Polymer (Guildf.) 49, 1993–2007 (2008)Google Scholar
  25. 25.
    H.C. Ansel, L.V. Allen Jr, N.G. Popovich, Pharmaceutical dosage forms and drug delivery systems (Lippincott Williams & Wilkins, Baltimore, 2005)Google Scholar
  26. 26.
    B.W. Barry, Dermatological formulation: percutaneous absorption (Marcel Decker, New York, 1983)Google Scholar
  27. 27.
    R.L. Bronaugh, H.I. Maibach (eds.), Percutaneous absorption, 3rd edn. (Marcel Decker, New York, 1989)Google Scholar
  28. 28.
    Y.W. Chien, Novel drug delivery system, Chap. 7, 2nd edn. (Marcel Decker, New York, 1982)Google Scholar
  29. 29.
    D.S. Hsieh, Drug permeation enhancement (Marcel Decker, New York, 1994)Google Scholar
  30. 30.
    R.D. Stoughton, Percutaneous absorption. Toxicol. Appl. Pharmocol. 7, 1–8 (1965)Google Scholar
  31. 31.
    C.D. Black, Transdermal DDS. US Pharm. 1, 49 (1982)Google Scholar
  32. 32.
    A. Gupta, S.K. Prajapati, M. Balamurugan et al., Design and development of a proniosomal transdermal drug delivery system for captopril. Trop. J. Pharm. Res. 6, 687–693 (2007)Google Scholar
  33. 33.
    A. Shahiwala, A.N. Misra, Studies in topical application of niosomally entrapped Nimesulide. J. Pharm. Pharm. Sci. 5, 220–225 (2002)Google Scholar
  34. 34.
    A. Namdeo, N.K. Jain, Niosomal delivery of 5-fluorouracil. J. Microencapsul. 16, 731–740 (1999)Google Scholar
  35. 35.
    J.Y. Fang, C.T. Hong, W.T. Chiu et al., Effect of liposomes and niosomes on skin permeation of enoxacin. Int. J. Pharm. 219, 61–72 (2001)Google Scholar
  36. 36.
    P.J. Watts, L. Illum, Colonic drug delivery. Drug Dev. Ind. Pharm. 23, 893–913 (1997)Google Scholar
  37. 37.
    M. Marvola, P. Nykänen, S. Rautio et al., Enteric polymers as binders and coating materials in multiple-unit site-specific drug delivery systems. Eur. J. Pharm. Sci. 7, 259–267 (1999)Google Scholar
  38. 38.
    K. Niwa, T. Takaya, T. Morimoto et al., Preparation and evaluation of a time-controlled release capsule made of ethylcellulose for colon delivery of drugs. J. Drug Target. 3, 83–89 (1995)Google Scholar
  39. 39.
    V.R. Sinha, R. Kumria, Microbially triggered drug delivery to the colon. Eur. J. Pharm. Sci. 18, 3–18 (2003)Google Scholar
  40. 40.
    D.F. Evans, G. Pye, R. Bramley et al., Measurement of gastrointestinal pH profiles in normal ambulant subject. Gut 29, 1035–1041 (1988)Google Scholar
  41. 41.
    S.S. Davis, J.G. Hardy, A. Stockwell et al., The effect of food on the gastrointestinal transit of pellets and an osmotic device (Osmet). Int. J. Pharm. 21, 331–340 (1984)Google Scholar
  42. 42.
    R.K. Verma, B. Mishra, S. Garg, Osmotically controlled oral drug delivery. Drug Dev. Ind. Pharm. 26, 695–708 (2000)Google Scholar
  43. 43.
    Y. Gan, W. Pan, M. Wei, R. Zhang, Cyclodextrin complex osmotic tablet for glipizide delivery. Drug Dev. Ind. Pharm. 28, 1015–1021 (2002)Google Scholar
  44. 44.
    M. Ali, A. Behnaz, P. Mojgan et al., Solid carriers for improved solubility of glipizide in osmotically controlled oral drug delivery system. Drug Dev. Ind. Pharm. 33, 812–823 (2007)Google Scholar
  45. 45.
    S.A. Menqi, S.G. Deshpande, Ocular drug delivery, in Controlled and novel drug delivery, 1997th edn., ed. by N.K. Jain (CBS, Sagar, 2002), p. 85Google Scholar
  46. 46.
    S. Paul, R. Mondal, R. Somdipta, S. Maiti, Anti-glaucoma niosomal system: rescent trend in ocular delivery. Int. J. Pharm. Pharm. Sci. 2, 15–18 (2010)Google Scholar
  47. 47.
    S. Rathode, S.G. Deshpande, Albumin microspheres as an ocular delivery for pilocarpine nitrate. Int. J. Pharm. Sci. 70(2), 193–197 (2008)Google Scholar
  48. 48.
    M. Charsden, R. Langer (eds.), Biodegradable polymers as drug delivery system (Marcel Dekker, New York, 1990), pp. 43–70Google Scholar
  49. 49.
    S.A. Menqi, S.G. Deshpande, Ocular drug delivery, in Controlled and novel drug delivery, 1997th edn., ed. by N.K. Jain (CBS, Sagar, 2002), p. 89Google Scholar
  50. 50.
    R. Kapadia, H. Khambete, R. Katara, S. Ramteke, A novel approach for ocular delivery of acyclovir via niosome entrapped in-situ hydrogel system. J. Pharm. Res. 2(4), 745–751 (2009)Google Scholar
  51. 51.
    S.J. Douglas, S.S. Davis, L. Illum, Nanoparticles in drug delivery. Crit. Rev. Ther. Drug Carr. Syst. 3, 233–261 (1987)Google Scholar
  52. 52.
    H. Harashima, K. Sakata, K. Funato, H. Kiwada, Enhanced hepatic uptake of liposomes through complement activation depending on the size of liposomes. Pharm. Res. 11, 402–406 (1994)Google Scholar
  53. 53.
    D.V. Devine, K. Wong, K. Serrano, A. Chonn, P.R. Cullis, Liposome–complement interactions in rat serum: implications for liposome survival studies. Biochim. Biophys. Acta 1191, 43–51 (1994)Google Scholar
  54. 54.
    S.M. Moghimi, H. Hedeman, I.S. Muir, L. Illum, S.S. Davis, An investigation of the filtration capacity and the fate of large filtered sterically-stabilized microspheres in rat spleen. Biochim. Biophys. Acta 1157, 233–240 (1993)Google Scholar
  55. 55.
    S.E. Dunn, A. Brindley, S.S. Davis, M.C. Davies, L. Illum, Polystyrene–poly(ethylene glycol) (PS-PEG2000) particles as model systems for site specific drug delivery. 2. The effect of PEG surface density on the in vitro cell interaction and in vivo biodistribution. Pharm. Res. 11, 1016–1022 (1994)Google Scholar
  56. 56.
    R. Gref, Y. Minamitake, M.T. Peracchia, V. Trubetskoy, V. Torchilin, R. Langer, Biodegradable long-circulating polymer nanospheres. Science 263, 1600–1603 (1994)Google Scholar
  57. 57.
    M. Yokoyama, G.S. Kwon, T. Okano, Y. Sakurai, K. Kataoka, Development of micelle-forming polymeric drug with superior anticancer activity. ACS Symp. Ser. 545, 126–134 (1994)Google Scholar
  58. 58.
    Y.-L. Hao, Y.-J. Deng, Y. Chen, K.-Z. Wang, A.-J. Hao, Y. Zhang, In-vitro cytotoxicity, in vivo biodistribution and antitumor effect of PEGylated liposomal topotecan. J. Pharm. Pharmacol. 57, 1279–1287 (2005)Google Scholar
  59. 59.
    S.Y. Kim, I.G. Shin, Y.M. Lee, Amphiphilic diblock copolymeric nanospheres composed of methoxy poly(ethylene glycol) and glycolide: properties, cytotoxicity and drug release behaviour. Biomaterials 20, 1033–1042 (1999)Google Scholar
  60. 60.
    J. Liu, Y. Xiao, C. Allen, Polymer–drug compatibility: a guide to the development of delivery systems for the anticancer agent, ellipticine. J. Pharm. Sci. 93, 132–143 (2004)Google Scholar
  61. 61.
    S.Y. Kim, I.G. Shin, Y.M. Lee, C.S. Cho, Y.K. Sung, Methoxy poly(ethylene glycol) and epsilon-caprolactone amphiphilic block copolymeric micelle containing indomethacin. II. Micelle formation and drug release behaviours. J. Control. Release 51, 13–22 (1998)Google Scholar
  62. 62.
    R.T. Dorr, Pharmacology and toxicology of Cremophor EL diluent. Ann. Pharmacother. 28, 11–14 (1994)Google Scholar
  63. 63.
    R.R. Kokardekar, H.R. Mody, Solid lipid nanoparticles: a drug carrier system. Chron. Young Sci. 2(1), 26–28 (2011)Google Scholar
  64. 64.
    A. Sharma, U. Sharma, Liposomes in drug delivery: progress and limitations. Int. J. Pharm. 154, 123–140 (1997)Google Scholar
  65. 65.
    A.D. Bangham, in Progress in biophysics and molecular biology, ed. by J.A.V. Butler, D. Noble (Pergamon, Oxford, 1968)Google Scholar
  66. 66.
    D. Papahadjopoulos, K.K. Kimelberg, Prog. Surf Sci. 4, 141 (1973)Google Scholar
  67. 67.
    A.D. Bangham, M.W. Hill, N.G.A. Miller, in Methods in membrane biology, ed. by E.D. Korn (Plenum, New York, 1974), pp. 11–38Google Scholar
  68. 68.
    A. Jesorka, O. Orwar, Liposomes: technologies and analytical applications. Annu. Rev. Anal. Chem. 1(1), 801–832 (2008)Google Scholar
  69. 69.
    T. Lian, R.J.Y. Ho, Trends and developments in liposome drug delivery systems. J. Pharm. Sci. 90(6), 667–680 (2001)Google Scholar
  70. 70.
    A.N. Martin, Colloids, Chapt. 15, in Physical pharmacy: physical chemical principles in the pharmaceutical sciences, 4th edn., ed. by A.N. Martin (Williams and Wilkins, Baltimore, 1993), pp. 393–422Google Scholar
  71. 71.
    M.C. Jones, J.C. Leroux, Polymeric micelles—a new generation of colloidal drug carriers. Eur. J. Pharm. Biopharm. 48, 101–111 (1999)Google Scholar
  72. 72.
    G.S. Kwon, K. Kataoka, Block copolymer micelles as long-circulating drug vehicles. Adv. Drug Deliv. Rev. 16, 295–309 (1995)Google Scholar
  73. 73.
    G.S. Kwon, Diblock copolymer nanoparticles for drug delivery. Crit. Rev. Ther. Drug Carr. Syst. 15, 481–512 (1998)Google Scholar
  74. 74.
    A. Lavasanifar, J. Samuel, G.S. Kwon, Poly(ethylene oxide)-blockpoly(l-amino acid) micelles for drug delivery. Adv. Drug Deliv. Rev. 54, 169–190 (2002)Google Scholar
  75. 75.
    C. Allen, D. Maysinger, A. Eisenberg, Nano-engineering block copolymer aggregates for drug delivery. Colloids Surf. B 16, 3–27 (1999)Google Scholar
  76. 76.
    A. Vonarbourg, C. Passirani, P. Saulnier, J.-P. Benoit, Parameters influencing the stealthiness of colloidal drug delivery systems. Biomaterials 27, 4356–4373 (2006)Google Scholar
  77. 77.
    K. Kataoka, T. Matsumoto, M. Yokoyama, T. Okano, Y. Sakurai, S. Fukushima, K. Okamoto, G.S. Kwon, Doxorubicin-loaded poly(ethylene glycol)–poly(beta-benzyl-l-aspartate) copolymer micelles: their pharmaceutical characteristics and biological significance. J. Control. Release 64, 143–153 (2000)Google Scholar
  78. 78.
    G.S. Kwon, M. Yokoyama, T. Okano, Y. Sakurai, K. Kataoka, Biodistribution of micelle-forming polymer–drug conjugates. Pharm. Res. 10, 970–974 (1993)Google Scholar
  79. 79.
    G. Kwon, S. Suwa, M. Yokoyama, T. Okano, Y. Sakurai, K. Kataoka, Enhanced tumor accumulation and prolonged circulation times of micelle-forming poly(ethylene oxide-aspartate) block copolymer–adriamycin conjugates. J. Control. Release 29, 17–23 (1994)Google Scholar
  80. 80.
    S.Y. Kim, Y.M. Lee, H.J. Shin, J.S. Kang, Indomethacin-loaded methoxy poly(ethylene glycol)/poly(epsilon-caprolactone) diblock copolymeric nanosphere: pharmacokinetic characteristics of indomethacin in the normal Sprague-Dawley rats. Biomaterials 22, 2049–2056 (2001)Google Scholar
  81. 81.
    F. Kohori, K. Sakai, T. Aoyagi, M. Yokoyama, Y. Sakurai, T. Okano, Preparation and characterization of thermally responsive block copolymer micelles comprising poly(N-isopropylacrylamide-b-dl-lactide). J. Control. Release 55, 87–98 (1998)Google Scholar
  82. 82.
    M. Yokoyama, Polymeric micelles as a new drug carrier system and their required considerations for clinical trials. Expert Opin. Drug Deliv. 7(2), 145–158 (2010)Google Scholar
  83. 83.
    U. Kedar, P. Phutane, S. Shidhaye, V. Kadam, Advances in polymeric micelles for drug delivery and tumor targeting. Nanomedicine 6, 714–729 (2010)Google Scholar
  84. 84.
    M. Yokoyama, T. Okano, Y. Sakurai, S. Suwa, K. Kataoka, Introduction of cisplatin into polymeric micelles. J. Control. Release 39, 351–356 (1996)Google Scholar
  85. 85.
    M. Yokoyama, M. Miyauchi, N. Yamada, T. Okano, Y. Sakurai, K. Kataoka et al., Characterization and anticancer activity of the micelle-forming polymeric anticancer drug adriamycin-conjugated poly(ethylene glycol)–poly(aspartic acid) block copolymer. Cancer Res. 50, 1693–1700 (1990)Google Scholar
  86. 86.
    K. Kataoka, H. Togawa, A. Harada, K. Yasugi, T. Matsumoto, S. Katayose, Spontaneous formation of polyion complex micelles with narrow distribution from antisense oligonucleotide and cationic block copolymer in physiological saline. Macromolecules 29, 8556–8557 (1996)Google Scholar
  87. 87.
    A. Harada, K. Kataoka, Formation of polyion complex micelles in an aqueous milieu from a pair of oppositely-charged block copolymers with poly(ethylene glycol) segments. Macromolecules 28, 5294–5299 (1995)Google Scholar
  88. 88.
    T.K. Bronich, V.A. Kabanov, A.V. Kabanov, A. Eisenberg, Soluble complexes from poly(ethylene oxide)-block-polymethacrylate anions and N-alkylpyridinium cations. Macromolecules 30, 3519–3525 (1997)Google Scholar
  89. 89.
    X. Shuai, T. Merdan, A.K. Schaper, F. Xi, T. Kissel, Core-cross-linked polymeric micelles as paclitaxel carriers. Bioconjug. Chem. 154, 441–448 (2004)Google Scholar
  90. 90.
    Y. Liu, J. Sun, P. Zhang, Z. He, Amphiphilic polysaccharide–hydrophobicized graft polymeric micelles for drug delivery nanosystems. Curr. Med. Chem. 18(17), 2638–2648 (2011)Google Scholar
  91. 91.
    Y. Ohya, S. Takeda, Y. Shibata, T. Ouchi, A. Kano, T. Iwata, S. Mochizuki, Y. Taniwaki, A. Maruyama, Evaluation of polyanion-coated biodegradable polymeric micelles as drug delivery vehicles. J. Control. Release 155(1), 104–110 (2011)Google Scholar
  92. 92.
    Z. Zhang, D.W. Grijpma, J. Feijen, Thermo-sensitive transition of monomethoxy poly(ethylene glycol)-block-poly(trimethylene carbonate) films to micellar-like nanoparticles. J. Control. Release 112, 57–63 (2006)Google Scholar
  93. 93.
    V.P. Torchilin, V.S. Trubetskoy, K.R. Whiteman, P. Caliceti, P. Ferruti, F.M. Veronese, New synthetic amphiphilic polymers for steric protection of liposomes in vivo. J. Pharm. Sci. 84, 1049–1053 (1995)Google Scholar
  94. 94.
    M. Stepanek, K. Podhajecka, E. Tesarova, K. Prochazka, Hybrid polymeric micelles with hydrophobic cores and mixed polyelectrolyte/nonelectrolyte shells in aqueous media. I. Preparation and basic characterization. Langmuir 17, 4240–4244 (2001)Google Scholar
  95. 95.
    V.P. Torchilin, Structure and design of polymeric surfactant based drug delivery systems. J. Control. Release 73, 137–172 (2001)Google Scholar
  96. 96.
    M.Y. Kozlov, N.S. Melik-Nubarov, E.V. Batrakova, A.V. Kabanov, Relationship between pluronic block copolymer structure, critical micellization concentration and partitioning coefficients of low molecular mass solutes. Macromolecules 33, 3305–3313 (2000)Google Scholar
  97. 97.
    K.S. Soppimath, T.M. Aminabhavi, A.R. Kulkarni, W.E. Rudzinski, Biodegradable polymeric nanoparticles as drug delivery devices. J. Control. Release 70, 1–20 (2001)Google Scholar
  98. 98.
    T. Ameller, V. Marsaud, P. Legrand, R. Gref, G. Barratt, J.-M. Renoir, Polyester–poly(ethylene glycol) nanoparticles loaded with the pure antiestrogen RU 58668: physicochemical and opsonization properties. Pharm. Res. 20, 1063–1070 (2003)Google Scholar
  99. 99.
    L. Illum, S.S. Davis, The organ uptake of intravenously administered colloidal particles can be altered using a nonionic surfactant (Poloxamer 338). FEBS Lett. 167, 79–82 (1984)Google Scholar
  100. 100.
    R.H. Mueller, K.H. Wallis, Surface modification of i.v. injectable biodegradable nanoparticles with poloxamer polymers and poloxamine. Int. J. Pharm. 89, 25–31 (1993)Google Scholar
  101. 101.
    S.D. Troester, J. Kreuter, Contact angles of surfactants with a potential to alter the body distribution of colloidal drug carriers on poly(methyl methacrylate) surfaces. Int. J. Pharm. 45, 91–100 (1988)Google Scholar
  102. 102.
    L. Illum, I.M. Hunneyball, S.S. Davis, The effect of hydrophilic coatings on the uptake of colloidal particles by the liver and by peritoneal macrophages. Int. J. Pharm. 29, 53–65 (1986)Google Scholar
  103. 103.
    M.T. Peracchia, R. Gref, Y. Minamitake, A. Domb, N. Lotan, R. Langer, PEG-coated nanospheres from amphiphilic diblock and multiblock copolymers: investigation of their drug encapsulation and release characteristics. J. Control. Release 46, 223–231 (1997)Google Scholar
  104. 104.
    K. Tahara, S. Furukawa, H. Yamamoto, Y. Kawashima, Hybrid-modified poly(d,l-lactide-co-glycolide) nanospheres for a novel cellular drug delivery system. Int. J. Pharm. 392(1–2), 311–313 (2010)Google Scholar
  105. 105.
    T.J. de Faria, A. Machado de Campos, E.L. Senna, Preparation and characterization of poly(d,l-lactide) (PLA) and poly(d,l-lactide)–poly(ethylene glycol) (PLA–PEG) nanocapsules containing antitumoral agent methotrexate. Macromol. Symp. 229, 228–233 (2005)Google Scholar
  106. 106.
    M. Teixeira, M.J. Alonso, M.M.M. Pinto, C.M. Barbosa, Development and characterization of PLGA nanospheres and nanocapsules containing xanthone and 3-methoxyxanthone. Eur. J. Pharm. Biopharm. 59, 491–500 (2005)Google Scholar
  107. 107.
    C. Prego, D. Torres, E. Fernandez-Megia, R. Novoa-Carballal, E. Quinoa, M.J. Alonso, Chitosan–PEG nanocapsules as new carriers for oral peptide delivery. J. Control. Release 111, 299–308 (2006)Google Scholar
  108. 108.
    D.E. Discher, A. Eisenberg, Materials science: soft surfaces: polymer vesicles. Science 297, 967–973 (2002)Google Scholar
  109. 109.
    B.M. Discher, Y.-Y. Won, D.S. Ege, J.C.M. Lee, F.S. Bates, D.E. Discher, D.A. Hammer, Polymersomes: tough vesicles made from diblock copolymers. Science 284, 1143–1146 (1999)Google Scholar
  110. 110.
    H. Bermudez, A.K. Brannan, D.A. Hammer, F.S. Bates, D.E. Discher, Molecular weight dependence of polymersome membrane structure, elasticity, and stability. Macromolecules 35, 8203–8208 (2002)Google Scholar
  111. 111.
    F. Ahmed, D.E. Discher, Self-porating polymersomes of PEG–PLA and PEG–PCL: hydrolysis-triggered controlled release vesicles. J. Control. Release 96, 37–53 (2004)Google Scholar
  112. 112.
    F. Meng, C. Hiemstra, G.H.M. Engbers, J. Feijen, Biodegradable polymersomes. Macromolecules 36, 3004–3006 (2003)Google Scholar
  113. 113.
    P.J. Photos, L. Bacakova, B. Discher, F.S. Bates, D.E. Discher, Polymer vesicles in vivo: correlations with PEG molecular weight. J. Control. Release 90, 323–334 (2003)Google Scholar
  114. 114.
    S. Prakash, M. Malhotra, W. Shao, C. Tomaro-Duchesneau, S. Abbasi, Polymeric nanohybrids and functionalized carbon nanotubes as drug delivery carriers for cancer therapy. Adv. Drug Deliv. Rev. 63(14–15), 1340–1351 (2011)Google Scholar
  115. 115.
    F. Liang, B. Chen, A review on biomedical applications on single-walled carbon nanotubes. Curr. Med. Chem. 17, 10–24 (2010)Google Scholar
  116. 116.
    D.S. Bethune, C.H. Klang, M.S. de Vries, G. Gorman, R. Savoy, J. Vazquez, R. Beyers, Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363, 605–607 (1993)Google Scholar
  117. 117.
    A. Thess, R. Lee, P. Nikolaev, H. Diah, P. Petit, J. Robert, C. Xu, J.E. Fischer, R.E. Samalley, Crystalline ropes of metallic nanotubes. Science 273, 483–487 (1996)Google Scholar
  118. 118.
    A.M. Cassel, J.A. Raymakers, J. Kong, H. Dia, Large scale CVD synthesis of singlewalled carbon nanotubes. J. Phys. Chem B 103, 6484–6492 (1999)Google Scholar
  119. 119.
    D. Bonifazi, C. Nacci, R. Marega, S. Campidelli, G. Ceballos, S. Modesti, M. Meneghetti, M. Prato, Microscopic and spectroscopic characterization of paint brush-like single-walled carbon nanotubes. Nano Lett. 6, 1408–1414 (2006)Google Scholar
  120. 120.
    B. Zhao, H. Hu, A. Yu, D. Perea, R.C. Haddon, Synthesis and characterization of water soluble single-walled carbon nanotube graft copolymers. J. Am. Chem. Soc. 127, 8197–8203 (2005)Google Scholar
  121. 121.
    E.B. Malarkey, R.C. Reyes, B. Zhao, R.C. Haddon, V. Parpura, Water soluble singlewalled carbon nanotubes inhibit stimulated endocytosis in neurons. Nano Lett. 8, 3538–3542 (2008)Google Scholar
  122. 122.
    E.B. Malarkey, K.A. Fisher, E. Bekyarova, W. Liu, R.C. Haddon, V. Parpura, Conductive single-walled carbon nanotube substrates modulate neuronal growth. Nano Lett. 9, 264–268 (2009)Google Scholar
  123. 123.
    C.L. Lay, H.Q. Liu, H.R. Tan, Y. Liu, Delivery of paclitaxel by physically loading onto poly(ethylene glycol) (PEG)–graft-carbon nanotubes for potent cancer therapeutics. Nanotechnology 21, 65101 (2010)Google Scholar
  124. 124.
    M. Prato, K. Kostarelos, A. Bianco, Functionalized carbon nanotubes in drug design and discovery. Acc. Chem. Res. 41, 60–68 (2008)Google Scholar
  125. 125.
    J.E. Chung, M. Yokoyama, T. Aoyagi, Y. Sakurai, T. Okano, Effect of molecular architecture of hydrophobically modified poly(N-isopropylacrylamide) on the formation of thermoresponsive core-shell micellar drug carriers. J. Control. Release 53, 119–130 (1998)Google Scholar
  126. 126.
    Y.N. Nujoma, C.J. Kim, A designer’s polymer as an oral drug carrier (tablet) with pseudo-zero order kinetics. J. Pharm. Sci. 85, 1091–1095 (1996)Google Scholar
  127. 127.
    N. Konar, C.J. Kim, Water-soluble polycations as oral drug carriers (tablets). J. Pharm. Sci. 86, 1339–1344 (1997)Google Scholar
  128. 128.
    N. Konar, C.J. Kim, Water soluble quaternary amine polymers as controlled release carriers. J. Appl. Polym. Sci. 691, 263–269 (1998)Google Scholar
  129. 129.
    N. Konar, C.J. Kim, Drug release from drug–polyanion complex tablets: poly(acrylamido-2-methyl-1-propranesulfonate sodium-co-methyl methacrylate). J. Control. Release 57, 141–150 (1999)Google Scholar
  130. 130.
    N. Konar, C.J. Kim, Drug release from ionic drugs from water insoluble drug–polyion complex tablets, in Polymeric drugs and drug delivery systems, ed. by R.M. Ottenbrite, S.W. Kim (Technomic, Lancaster, 2001), pp. 69–85Google Scholar
  131. 131.
    E. Khalil, A. Sallam, Interaction of two diclofenac acid salts with copolymers of ammoniomethacrylate: effect of additives and release profiles. Drug Dev. Ind. Pharm. 25, 419–427 (1999)Google Scholar
  132. 132.
    H.K. Lee, J. Hadju, P. McGoff, Propranolol–methacrylic acid copolymer binding interaction. J. Pharm. Sci. 80, 178–180 (1991)Google Scholar
  133. 133.
    A. Licea-Claverie, E. Rogel-Hernandez, R. Salgado-Rodriguez, J.A. Lopez-Sanchez, L.A. Castillo, J.M. Cornejo-Bravo, K.F. Arndt, The use of hydrophobic spacers in the development of new temperature and pH-sensitive polymers. Macromol. Symp. 207, 193–215 (2004)Google Scholar
  134. 134.
    J. Zhang, C. Li, Y. Wang, R.-X. Zhuo, X.-Z. Zhang, Controllable exploding microcapsules as drug carriers. Chem. Commun. 47, 4457–4459 (2011)Google Scholar
  135. 135.
    J.H. Hamman, Chitosan based polyelectrolyte complexes as potential carrier materials in drug delivery systems. Mar. Drugs. 8, 1305–1322 (2010)Google Scholar
  136. 136.
    W. Argüelles-Monal, G. Cabrera, C. Peniche, M. Rinaudo, Conductimetric study of the interpolyelectrolyte reaction between chitosan and polygalacturonic acid. Polymer 41, 2373–2378 (2000)Google Scholar
  137. 137.
    A.I. Gamzazade, S.M. Nasibov, Formation and properties of polyelectrolyte complexes of chitosan hydrochloride and sodium dextransulfate. Carbohydr. Polym. 50, 339–343 (2002)Google Scholar
  138. 138.
    J.S. Maciel, D.A. Silva, H.C.B. Paula, R.C.M. de Paula, Chitosan/carboxymethyl cashew gum polyelectrolyte complex: synthesis and thermal stability. Eur. Polym. J. 41, 2726–2733 (2005)Google Scholar
  139. 139.
    E.S. Sashina, N.P. Novoselov, Polyelectrolyte complexes of fibroin with chitosan. Macromol. Chem. Polym. Mater. 78, 493–497 (2005)Google Scholar
  140. 140.
    Q. Zhao, J. Qian, Q. An, C. Gao, Z. Gui, H. Jin, Synthesis and characterization of soluble chitosan/sodium carboxymethyl cellulose polyelectrolyte complexes and the pervaporation dehydration of their homogenous membranes. J. Membr. Sci. 333, 68–78 (2009)Google Scholar
  141. 141.
    M.A. Oliveira, P.C. Ciarlini, J.P.A. Feitosa, R.C.M. de Paula, H.C.B. Paula, Chitosan/“angico” gum nanoparticles: synthesis and characterization. Mater. Sci. Eng. C 29, 448–451 (2009)Google Scholar
  142. 142.
    C. Alvarez-Lorenzo, A. Concheiro, Intelligent drug delivery systems: polymeric micelles and hydrogels. Mini Rev. Med. Chem. 8(11), 1065–1074 (2008)Google Scholar
  143. 143.
    C.Y. Nho, S.U. Park, H.I. Kim, T.S. Hwang, Oral delivery of insulin using pH-sensitive hydrogels based on polyvinyl alcohol grafted with acrylic acid/methacrylic acid by radiation. Nucl. Instrum. Methods B 236, 283–288 (2005)Google Scholar
  144. 144.
    R.C. Mundargi, V. Rangaswamy, T.M. Aminabhavi, Poly(N-vinylcaprolactam-co-methacrylic acid) hydrogel microparticles for oral insulin delivery. J. Microencapsul. 28(5), 384–394 (2011)Google Scholar
  145. 145.
    K.M. Gupta, S.R. Barnes, R.A. Tangaro et al., Temperature and pH sensitive hydrogels: an approach towards smart semen-triggered vaginal microbicidal vehicles. J. Pharm. Sci. 96(3), 670–681 (2007)Google Scholar
  146. 146.
    P. Gupta, K. Vermani, S. Garg, Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discov. Today 7(10), 569–579 (2002)Google Scholar
  147. 147.
    S.R. Sershen, S.L. Westcott, N.J. Halas, J.L. West, Temperature-sensitive polymer–nanoshell composites for photothermally modulated drug delivery. J. Biomed. Mater. Res. 51(3), 293–298 (2000)Google Scholar
  148. 148.
    S. Tanna, T.S. Sahota, K. Sawicka, M.J. Taylor, The effect of degree of acrylic derivatisation on dextran and concanavalin A glucose-responsive materials for closed-loop insulin delivery. Biomaterials 27(25), 4498–4507 (2006)Google Scholar
  149. 149.
    Y. Ishihara, H.S. Bazzi, V. Toader, F. Godin, H.F. Sleiman, Molecule-responsive block copolymer micelle. Chemistry 13(16), 4560–4570 (2007)Google Scholar
  150. 150.
    C. Alvarez-Lorenzo, S. Deshmukh, L. Bromberg, T.A. Hatton, I. Sandez-Macho, A. Concheiro, Temperature- and light-responsive blends of pluronic F127 and poly(N,N-dimethylacrylamide-co-methacryloyloxyazobenzene). Langmuir 23(23), 11475–11481 (2007)Google Scholar
  151. 151.
    L.B. Alkayyali, O.A. Abu-Diak, G.P. Andrews, D.S. Jones, Hydrogels as drug-delivery platforms: physicochemical barriers and solutions. Ther. Deliv. 3(6), 775–786 (2012)Google Scholar
  152. 152.
    H.K. Shah, J.A. Conkie, R.C. Tait, J.R. Johnson, C.G. Wilson, A novel, biodegradable and reversible polyelectrolyte platform for topical-colonic delivery of pentosan polysulphate. Int. J. Pharm. 404(1–2), 124–132 (2011)Google Scholar
  153. 153.
    X. Jin, X. Zhang, Z. Wu et al., Amphiphilic random glycopolymer based on phenylboronic acid: synthesis, characterization, and potential as glucose-sensitive matrix. Biomacromolecules 10(6), 1337–1345 (2009)Google Scholar
  154. 154.
    L. Wang, M. Liu, C. Gao, L. Ma, D. Cui, A pH-thermo-, and glucose-, triple responsive hydorgels: synthesis and controlled drug delivery. React. Funct. Polym. 70, 159–167 (2010)Google Scholar
  155. 155.
    L. Bromberg, Intelligent hydrogels for the oral delivery of chemotherapeutics. Expert Opin. Drug Deliv. 2(6), 1003–1013 (2005)Google Scholar
  156. 156.
    N. Li, J. Wang, X. Yang, L. Li, Novel nanogels as drug delivery systems for poorly soluble anticancer drugs. Colloids Surf. B Biointerfaces 83(2), 237–244 (2011)Google Scholar
  157. 157.
    H.T. Ta, C.R. Dass, I. Larson, P.F. Choong, D.E. Dunstan, A chitosan–dipotassium orthophosphate hydrogel for the delivery of Doxorubicin in the treatment of osteosarcoma. Biomaterials 30(21), 3605–3613 (2009)Google Scholar
  158. 158.
    M. Patel, L. Mao, B. Wu, P.J. Vandevord, GDNF–chitosan blended nerve guides: a functional study. J. Tissue Eng. Regen. Med. 1(5), 360–367 (2007)Google Scholar
  159. 159.
    N. Bhattarai, J. Gunn, M. Zhang, Chitosan-based hydrogels for controlled, localized drug delivery. Adv. Drug Deliv. Rev. 62(1), 83–99 (2010)Google Scholar
  160. 160.
    L. Klouda, K.R. Perkins, B.M. Watson et al., Thermoresponsive, in situ cross-linkable hydrogels based on N-isopropylacrylamide: fabrication, characterization and mesenchymal stem cell encapsulation. Acta Biomater. 7(4), 1460–1467 (2011)Google Scholar
  161. 161.
    H. Nazar, M. Roldo, D.G. Fatouros, S.M. Van Der Merwe, J. Tsibouklis, Hydrogels in mucosal delivery. Ther. Deliv. 3(4), 535–555 (2012)Google Scholar
  162. 162.
    Y. Cao, C. Zhang, W. Shen, Z. Cheng, L.L. Yu, Q. Ping, Poly(N-isopropylacrylamide)-chitosan as thermosensitive in situ gel-forming system for ocular drug delivery. J. Control. Release 120(3), 186–194 (2007)Google Scholar
  163. 163.
    E. Barbu, L. Verestiuc, M. Iancu, A. Jatariu, A. Lungu, J. Tsibouklis, Hybrid polymeric hydrogels for ocular drug delivery: nanoparticulate systems from copolymers of acrylic acid-functionalized chitosan and N-isopropylacrylamide or 2-hydroxyethyl methacrylate. Nanotechnology 20(22), 225108 (2009)Google Scholar
  164. 164.
    G.P. Misra, R.S. Singh, T.S. Aleman, S.G. Jacobson, T.W. Gardner, T.L. Lowe, Subconjunctivally implantable hydrogels with degradable and thermoresponsive properties for sustained release of insulin to the retina. Biomaterials 30(33), 6541–6547 (2009)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Fatma Bassyouni
    • 1
  • Noha ElHalwany
    • 2
  • Mohamed Abdel Rehim
    • 3
  • Munir Neyfeh
    • 4
  1. 1.Department of Chemistry of Natural and Microbial Products and Department of Pharmaceutical Research, Center of Excellence for Advanced SciencesNational Research CenterCairoEgypt
  2. 2.Department of Polymers and PigmentsNational Research CentreCairoEgypt
  3. 3.Department of Analytical ChemistryStockholm UniversityStockholmSweden
  4. 4.Department of PhysicsUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations