Skip to main content
Log in

Computer simulation of chemical reactions occurring in collapsing acoustical bubble: dependence of free radicals production on operational conditions

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Acoustic cavitation is responsible for both sonochemistry and sonoluminescence. In this theoretical investigation, computer simulation of chemical reactions occurring in an isolated cavitation bubble oscillating in water irradiated by an ultrasonic wave has been performed for various acoustic amplitudes, different static pressures and diverse liquid temperatures to study the relationship between these three key parameters in sonochemistry and the oxidants created in the bubble. The results of the numerical simulations indicated that the main oxidants created in an O2 bubble are OH radical and O atom. The amount of the oxidants formed in the bubble at the end of the bubble collapse increases as the acoustic amplitude increases from 1.5 to 3 atm. For each acoustic amplitude, there exists an optimal static pressure for the production of the oxidants, which shifts toward a higher value as the acoustic amplitude increases. Correspondingly, for each acoustic amplitude, an optimum of liquid temperature was observed at 20 °C for OH, HO2 and H2O2. The simple model adopted in this work, after comparisons with the trends obtained with the literature experimental observations, seems to satisfactorily explain the experimental observations and should practically aid in optimization of operating conditions for sonochemical reactions. Results from this study were discussed and some recommendations were given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K.S. Suslick, Y. Didenko, M.M. Fang, T. Hyeon, K.J. Kolbeck, W.B. McNamara, M.M. Mdleleni, M.M. Wong, Philos. Trans. R. Soc. Lond. A 357, 335 (1999)

    Article  CAS  Google Scholar 

  2. L.H. Thompson, L.K. Doraiswamy, Ind. Eng. Chem. Res. 38, 1215 (1999)

    Article  CAS  Google Scholar 

  3. Y.G. Adewuyi, Ind. Eng. Chem. Res. 40, 4681 (2001)

    Article  CAS  Google Scholar 

  4. P. Riesz, D. Berdahl, C.L. Christman, Environ. Health Perspect. 64, 233 (1985)

    Article  CAS  Google Scholar 

  5. Y.G. Adewuyi, Environ. Sci. Technol. 39, 3409 (2005)

    Article  CAS  Google Scholar 

  6. KS. Suslick, in Encyclopedia of Physical Science and Technology, 3rd edn. ed. by R.A. Meyers (Academic, San Diego, 2001)

  7. V. Kamath, A. Prosperetti, F.N. Egolfopoulos, J. Acoust. Soc. Am. 94, 248 (1993)

    Article  Google Scholar 

  8. D.V. Prasad Naidu, R. Rajan, R. Kumar, K.S. Gandhi, V.H. Arakeri, S. Chandrasekaran, Chem. Eng. Sci. 49, 877 (1994)

    Article  Google Scholar 

  9. C. Gong, D.P. Hart, J. Acoust. Soc. Am. 104, 2675 (1998)

    Article  Google Scholar 

  10. K. Yasui, T. Tuziuti, M. Sivakumar, Y. Iida, J. Chem. Phys. 122, 224706 (2005)

    Article  Google Scholar 

  11. A.J. Colussi, L.K. Weavers, M.R. Hoffmann, J. Phys. Chem. A 102, 6927 (1998)

    Article  CAS  Google Scholar 

  12. S. Sochard, A.M. Wilhelm, H. Delmas, Ultrason. Sonochem. 4, 77 (1997)

    Article  CAS  Google Scholar 

  13. K.S. Suslick, D.A. Hammerton, R.E. Cline, J. Am. Chem. Soc. 108, 641 (1986)

    Article  Google Scholar 

  14. L.A. Crum, J. Acoust. Soc. Am. 73, 116 (1983)

    Article  Google Scholar 

  15. J.B. Keller, M.J. Miksis, J. Acoust. Soc. Am. 68, 628 (1980)

    Article  Google Scholar 

  16. Y. Hao, A. Prosperetti, Phys. Fluids 11, 2008 (1999)

    Article  CAS  Google Scholar 

  17. N.P. Vichare, P. Senthilkumar, V.S. Moholkar, P.R. Gogate, A.B. Pandit, Ind. Eng. Chem. Res. 39, 1480 (2000)

    Article  CAS  Google Scholar 

  18. B.D. Storey, A.J. Szeri, Proc. R. Soc. Lond. A 456, 1685 (2000)

    Article  CAS  Google Scholar 

  19. S. Fujikawa, T. Akamatsu, J. Fluid Mech. 97, 481 (1980)

    Article  CAS  Google Scholar 

  20. RK. Sinnott, Coulson & Richardson’s Chemical Engineering, vol. 6, 4th edn. (Elsevier Butterworth–Heinemann, Oxford, 2005), pp. 937–957

  21. Coker AK, Fortran programs for chemical process design, analysis, and simulation. (Gulf Publishing Company, Houston, Texas, 1995), pp. 104–108

  22. C.S. Dutcher, A.S. Wexler, S.L. Clegg, J. Phys. Chem. A 114, 12216 (2000)

    Article  Google Scholar 

  23. M. Laliberté, J. Chem. Eng. Data 52, 321 (2007)

    Article  Google Scholar 

  24. W. Wagner, H-J. Kretzschmar, International steam tables: properties of water and steam based on the industrial formulation IAPWSIF97, 2nd edn (Springer, Berlin, 2008), pp. 170–188

  25. Beaton CF, Hewitt GF, Physical property data for the design engineer (Hemisphere, New York, 1989), pp. 273–306

  26. M.O. Conaire, H.J. Curran, J.M. Simmie, W.J. Pitz, C.K. Westbrook, Int. J. Chem. Kinet. 36, 603 (2004)

    Article  CAS  Google Scholar 

  27. M.A. Mueller, T.J. Kim, R.A. Yetter, F.L. Dryer, Int. J. Chem. Kinet. 31, 113 (1999)

    Article  CAS  Google Scholar 

  28. B.-S. Choi, J.S. Oh, S.-W. Lee, H. Kim, J. Yi, Ind. Eng. Chem. Res. 40, 4040 (2001)

    Article  CAS  Google Scholar 

  29. M.A. Beckett, I. Hua, J. Phys. Chem. A 105, 3796 (2001)

    Article  CAS  Google Scholar 

  30. J.W. Kang, H.M. Hung, A. Lin, M.R. Hoffmann, Environ. Sci. Technol. 3, 3199 (1993)

    Google Scholar 

  31. S. Koda, T. Kimura, T. Kondo, H. Mitome, Ultrason. Sonochem. 10, 149 (2003)

    Article  CAS  Google Scholar 

  32. A. Brotchie, F. Grieser, M. Ashokkumar, Phys. Rev. Lett. 102, 084302 (2009)

    Article  Google Scholar 

  33. B.P. Barber, C.C. Wu, R. Lofsted, P.H. Roberts, S.J. Putterman, Phys. Rev. Lett. 72, 1380 (1994)

    Article  CAS  Google Scholar 

  34. S, Labouret, J. Frohly, 10ème Congrès Français d’Acoustique (2010), http://hal.archives-ouvertes.fr/docs/00/55/11/51/PDF/000441.pdf

  35. S. Merouani, O. Hamdaoui, Y. Rezgui, M. Guemini, Ultrason. Sonochem. 20, 815 (2013)

    Article  CAS  Google Scholar 

  36. S. Merouani, O. Hamdaoui, F. Saoudi, M. Chiha, J. Hazard. Mater. 178, 1007 (2010)

    Article  CAS  Google Scholar 

  37. G. Mark, A. Tauber, R. Laupert, H.-P. Schechmann, D. Schulz, A. Mues, C. Von Sonntag, Utrason. Sonochem. 5, 41 (1998)

    Article  CAS  Google Scholar 

  38. P. Kanthale, M. Ashokkumar, F. Grieser, Ultrason. Sonochem. 15, 143 (2008)

    Article  CAS  Google Scholar 

  39. R.A. Torres, C. Pétrier, E. Combet, M. Carrier, C. Pulgarin, Ultrason. Sonochem. 15, 605 (2008)

    Article  CAS  Google Scholar 

  40. A. Weissler, J. Acoust. Soc. Am. 24, 651 (1953)

    Article  Google Scholar 

  41. A. Henglein, A. Gutierrez, J. Phys. Chem. 97, 158 (1993)

    Article  CAS  Google Scholar 

  42. M.M. Van Iersel, J.-P.A.J. Den Manacker Van, N.E. Benes, J.T.F. Keurentjes, J. Phys. Chem. B 111, 3081 (2007)

    Article  Google Scholar 

  43. M.H. Entezari, P. Kruus, Utrason. Sonochem. 3, 19 (1996)

    Article  CAS  Google Scholar 

  44. T.J. Mason, J.P. Lorimer, D.M. Bates, Y. Zhao, Utrason. Sonochem. 1, S91 (1994)

    Article  CAS  Google Scholar 

  45. Y. Iida, K. Yasui, T. Tuziuti, M. Sivakumar, Microchem. J. 80, 159 (2005)

    Article  CAS  Google Scholar 

  46. M. Cutierrez, A. Henglein, J. Phys. Chem. 94, 3625 (1990)

    Article  Google Scholar 

Download references

Acknowledgments

The financial support by the General Directorate for Scientific Research and Technological Development (PNR Project No. 4/D/25) and the Ministry of Higher Education and Scientific Research of Algeria (Projects No. J0101120090018 and J0101120120098) is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oualid Hamdaoui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merouani, S., Hamdaoui, O., Rezgui, Y. et al. Computer simulation of chemical reactions occurring in collapsing acoustical bubble: dependence of free radicals production on operational conditions. Res Chem Intermed 41, 881–897 (2015). https://doi.org/10.1007/s11164-013-1240-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-013-1240-y

Keywords

Navigation