Skip to main content
Log in

Kinetics and mechanism of photocatalytic degradation of metobromuron by TiO2 in simulated sunlight

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The kinetics of photocatalytic degradation of metobromuron in aqueous solution, with TiO2 as photocatalyst under simulated sunlight irradiation, have been systematically investigated. The single-variable-at-a-time method and the central composite design based on response surface methodology were used to study the individual and synergistic effects of several classical conditions on the efficiency of photocatalysis. Three different conditions, TiO2 concentration, pH, and initial concentration of metobromuron, were found to independently determine the efficiency of degradation. The optimum degradation conditions were: TiO2 concentration 3.00 g/L, pH 7.88, and initial concentration of metobromuron 60.23 μM. In addition, a mechanism of degradation of metobromuron is tentatively proposed on the basis of the experimental results and theoretical calculation of frontier electron densities and point charges. The results suggest that substitution of the Br atom, addition of ·OH radicals, and the cleavage of urea side chain are the predominant degradation pathways during the initial stage of photocatalytic degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. F. Pena, S. Cardenas, M. Gallego, M. Valcarcel, Talanta 56, 727–734 (2002)

    Article  CAS  Google Scholar 

  2. P. Paiga, S. Morais, M. Correia, C. Delerue-Matos, A. Alves, Int. J. Environ. Anal. Chem. 89, 199–210 (2009)

    Article  CAS  Google Scholar 

  3. C.M. Fouque, J.M.B. Fournier, Talanta 43, 1793–1802 (1996)

    Article  Google Scholar 

  4. K. Satsuma, Pest Manag. Sci. 66, 847–852 (2010)

    CAS  Google Scholar 

  5. N. Hoda, E. Bayram, E. Ayranci, Innov. Chem. Biol. 16, 225–232 (2009)

    Article  Google Scholar 

  6. C. Lesueur, P. Knittl, M. Gartner, A. Mentler, M. Fuerhacker, Food Control 19, 906–914 (2008)

    Article  CAS  Google Scholar 

  7. R.X. Mou, M.X. Chen, J.L. Zhi, J. Chromatogr. B 875, 437–443 (2008)

    Article  CAS  Google Scholar 

  8. F. Van Hoof, P. Van Wiele, F. Acobas, J.L. Guinamant, A. Bruchet, I. Schmitz, I. Bobeldijk, F. Sacher, F. Ventura, J. AOAC Int. 85, 375–383 (2002)

    Google Scholar 

  9. A. Kotrikla, G. Gatidou, T.D. Lekkas, J. Environ. Sci. Health B 41, 135–144 (2006)

    Article  CAS  Google Scholar 

  10. R. Carabias-Martinez, E. Rodriguez-Gonzalo, E. Herrero-Hernandez, J. Hernandez-Mendez, Anal. Chim. Acta 517, 71–79 (2004)

    Article  CAS  Google Scholar 

  11. T.-Y. Chou, S.-L. Lin, M.-R. Fuh, Talanta 80, 493–498 (2009)

    Article  CAS  Google Scholar 

  12. S.K. Hong, D.K. Anestis, T.T. Henderson, G.O. Rankin, Toxicol. Lett. 114, 125–133 (2000)

    Article  CAS  Google Scholar 

  13. T.K.S. Janssens, D. Giesen, J. Mariën, N.Mv. Straalen, C.A.Mv. Gestel, D. Roelofs, Environ. Int. 37, 929–939 (2011)

    Article  CAS  Google Scholar 

  14. A. Turcant, A. Cailleux, A. Le Bouil, P. Allain, P. Harry, A. Renault, J. Anal. Toxicol. 24, 157–164 (2000)

    Article  CAS  Google Scholar 

  15. C.C. Yang, S.F. Hwang, M.M. Chou, J.F. Deng, J. Toxicol. Clin. Toxicol. 33, 713–716 (1995)

    Article  CAS  Google Scholar 

  16. H. Yang, T. An, G. Li, W. Song, W.J. Cooper, H. Luo et al., J. Hazard. Mater. 179, 834–839 (2010)

    Article  CAS  Google Scholar 

  17. T. An, H. Yang, W. Song, G. Li, H. Luo, W.J. Cooper, J. Phys. Chem. A 114, 2569–2574 (2010)

    Article  CAS  Google Scholar 

  18. Y. Wu, H. Yuan, X. Jiang, G. Wei, C. Li, W. Dong, J. Environ. Sci. 24, 1679–1685 (2012)

    Article  CAS  Google Scholar 

  19. A. Boulkamh, T. Sehili, P. Boule, J. Photochem. Photobiol. A 16, 191–199 (2001)

    Article  Google Scholar 

  20. S. Parra, J. Olivero, C. Pulgarin, Appl. Catal. B 36, 75–85 (2002)

    Article  CAS  Google Scholar 

  21. A. Amine-Khodja, A. Boulkamh, C. Richard, Appl. Catal. B 59, 147–154 (2005)

    Article  CAS  Google Scholar 

  22. T. An, J. An, H. Yang, G. Li, H. Feng, X. Nie, J. Hazard. Mater. 197, 229–236 (2011)

    Article  CAS  Google Scholar 

  23. J. Chen, G. Li, Y. Huang, H. Zhang, H. Zhao, T. An, Appl. Catal. B 123–124, 69–77 (2012)

    Article  Google Scholar 

  24. V.A. Sakkas, M.A. Islam, C. Stalikas, T.A. Albanis, J. Hazard. Mater. 175, 33–44 (2010)

    Article  CAS  Google Scholar 

  25. A.H. Abdullah, H.J.M. Moey, N.A. Yusof, J. Environ. Sci. 24, 1694–1701 (2012)

    Article  CAS  Google Scholar 

  26. B.D. Lee, M. Iso, M. Hosomi, Chemosphere 42, 431–435 (2001)

    Article  CAS  Google Scholar 

  27. Y. Ohko, K.I. Iuchi, C. Niwa, T. Tatsuma, T. Nakashima, T. Iguchi, Y. Kubota, A. Fujishima, Environ. Sci. Technol. 36, 4175–4181 (2002)

    Article  CAS  Google Scholar 

  28. T. An, H. Yang, G. Li, W.H. Song, W.J. Cooper, X. Nie, Appl. Catal. B 94, 288–294 (2010)

    Article  CAS  Google Scholar 

  29. H. Yang, G. Li, T. An, Y. Gao, J. Fu, Catal. Today 153, 200–207 (2010)

    Article  CAS  Google Scholar 

  30. R.W. Nims, J.L. Syi, D.A. Wink, V.C. Nelson, P.E. Thomas, C.R. Jones, B.A. Diwan, L.K. Keefer, J.M. Rice, R.A. Lubet, Chem. Res. Toxicol. 6, 180–187 (1993)

    Article  CAS  Google Scholar 

  31. T. An, W. Zhang, X. Xiao, G. Sheng, J. Fu, X. Zhu, J. Photochem. Photobiol. A 161, 233–242 (2002)

    Article  Google Scholar 

  32. J. Zhang, D. Fu, Y. Xu, C. Liu, J. Environ. Sci. 22, 1281–1289 (2010)

    Article  CAS  Google Scholar 

  33. M. Zarei, A. Niaei, D. Salari, A. Khataee, J. Hazard. Mater. 173, 544–551 (2010)

    Article  CAS  Google Scholar 

  34. H.L. Liu, Y.R. Chiou, Chem. Eng. J. 112, 173–179 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge generous financial support from the National Natural Science Foundation of China (no. 21207034, 21172064), the Science Foundation of Hunan Province (no. 2010FJ4116), the Provincial Natural Science Foundation of Hunan (no. 10JJ2006), and the Key Scientific Research Fund of Hunan Provincial Education Department (no. 10A022).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hai Yang or Bing Yi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 181 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, H., Deng, J., Liu, H. et al. Kinetics and mechanism of photocatalytic degradation of metobromuron by TiO2 in simulated sunlight. Res Chem Intermed 40, 225–238 (2014). https://doi.org/10.1007/s11164-012-0957-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-012-0957-3

Keywords

Navigation