Skip to main content

Curcuminoids as antioxidants and theoretical study of stability of curcumin isomers in gaseous state

Abstract

The antioxidant activity of three extracted curcuminods, namely, curcumin [(1E,6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)hepta-1,6-diene-3,5dione] (C), demethoxycurcumin (DMC), and bisdemethoxycurcumin (BDMC), were studied with the DPPH, hydrogen peroxide and nitric oxide radical methods, and compared with the known antioxidant ascorbic acid. Structures for the extracted curcuminods are proposed on the basis of spectroscopic evidence. Curcumin molecule stability was studied in the gaseous state, and it has two isomers [the diketone form, curcumin(I), and the enol form, curcumin(II)] through the theoretical study by relying on the results of density functions theory (DFT). The results of each of the total energy and the high occupied molecular orbital (HOMO) to curcumin(I) are more stable than to curcumin(II). The increase of the amount of total energy is −0.01301141 a.u., or equivalent, −8,164.783 cal mol−1. The HOMO level is −0.35865 eV, also the thermodynamic values (the change in entropy ∆S and the change in enthalpy ∆H) of the isomerization conversion form curcumin(II) to curcumin(I) spontaneous and endothermic reaction, of ∆S and ∆H are −3.136 cal mol−1 K−1 and −0.673 kcal mol−1, respectively. The results showed that the wavelength for greatest absorption (λ max) of the enol form curcumin(II) is longer than curcumin(I). This is due to the formation of a new double bond which leads to the association distribution of the electronic density along the molecule in the enol form.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2
Scheme 3

References

  1. P. Scartezzini, E. Speroni, Review on some plants of Indian traditional medicine with antioxidant activity. J. Ethnopharmacol. 71, 23–43 (2000)

    Article  CAS  Google Scholar 

  2. H.P.T. Ammon, M.A. Wahl, Pharmacology of Curcuma longa. Planta Med. 57(1991), 1–7 (1991)

    Article  CAS  Google Scholar 

  3. K. Yoshinobu, S. Yuriko, W. Noriko, O. Yoshiteru, H. Hiroshi, Planta Med. 49, 185–187 (1983)

    Article  Google Scholar 

  4. R. Kuttan, P. Bhanumathy, K. Nirmala, M. George, Cancer Lett. 29, 197–202 (1985)

    Article  CAS  Google Scholar 

  5. R. Selvam, L. Subramanian, R. Gayathri, N. Angayarkanni, J. Ethnopharmacol. 47, 59–67 (1995)

    Article  CAS  Google Scholar 

  6. F. Bonte, M.S. Noel-Hudson, J. Wepierre, A. Meybeck, Planta Med. 63, 265–266 (1997)

    Article  CAS  Google Scholar 

  7. M. Kolev, Int. J. Quantum Chem. 102(6), 1069–1079 (2005)

    Article  CAS  Google Scholar 

  8. J. Miłobȩdzka, St. Kostanecki, V. Lampe, Ber Dtsch Chem Ges 43(2), 2163–2170 (1910)

    Article  Google Scholar 

  9. A. Kadhum, A. Mohamad, A. Al-Amiery, Molecules 16, 6969–6984 (2011)

    Article  CAS  Google Scholar 

  10. W. Rose, M. Creighton, D. Stewart, M. Sanwal, G. Trevithick, Can. J. Ophtalmol. 17, 61–66 (1972)

    Google Scholar 

  11. W. Williams, M. Cuvelier, C. Berset, Lebensm. Wiss. Technol. 28, 25–30 (1995)

    Article  Google Scholar 

  12. L. Marcocci, L. Packer, M. Droy-Lefai, A. Sekaki, M. Albert, Methods Enzymol. 234, 462–475 (1994)

    Article  CAS  Google Scholar 

  13. A.H. Kadhum, A.A. Al-Amiery, A.Y. Musa, A. Mohamad, Int. J. Mol. Sci. 12, 5747–5761 (2011)

    Article  CAS  Google Scholar 

  14. C. Anuradha, J. Aukunuru, Trop. J. Pharm. Res. 9(1), 51–58 (2010)

    Article  CAS  Google Scholar 

  15. J.A. Pople et al., Gaussian, 2004 Gaussian 03W (Revision C.01). Gaussian, Wallingford (2003)

  16. W.J. Pietro, M.M. Francl, W.J. Hehre, D.J. Defrees, J.A. Pople, J.S. Binkley, J. Am. Chem. Soc. 104, 5039–5048 (1982)

    Article  CAS  Google Scholar 

  17. K.D. Dobbs, W.J. Hehre, J. Comput. Chem. 8, 861–879 (1987)

    Article  CAS  Google Scholar 

  18. A.D. Becke, Phys. Rev. A38, 3098–3100 (1988)

    Google Scholar 

  19. A.D. Becke, J. Chem. Phys. 98, 5648–5652 (1993)

    Article  CAS  Google Scholar 

  20. C. Lee, W. Yang, R.G. Parr, Phys. Rev. B37, 785–789 (1988)

    Google Scholar 

  21. J.R. Soares, T. Dinis, P. Cunha, L. Almeida, Free Radic. Res. 26, 469–478 (1997)

    Article  CAS  Google Scholar 

  22. D. Garratt, in The quantitative analysis of drugs, vol 3 (Chapman and Hall, Tokyo, 1964) 3 pp. 456–458

  23. P.D. Duh, Y. Tu, G. Yen, Lebn. Wissen Technol. 32, 269 (1999)

    Article  CAS  Google Scholar 

  24. Y. Chen, M. Wong, R. Rosen, C. Ho, J. Agric. Food Chem. 47, 2226–2228 (1999)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed A. Al-Amiery.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Naama, J.H., Alwan, G.H., Obayes, H.R. et al. Curcuminoids as antioxidants and theoretical study of stability of curcumin isomers in gaseous state. Res Chem Intermed 39, 4047–4059 (2013). https://doi.org/10.1007/s11164-012-0921-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-012-0921-2

Keywords

  • Antioxidant
  • Curcumin
  • DPPH
  • HOMO
  • LUMO