Research on Chemical Intermediates

, Volume 39, Issue 4, pp 1665–1671 | Cite as

The composite material of perylene bisimide dye in MCM-41 and its photophysical and photochemical properties



The mesoporous material MCM-41 was synthesized by a hydrothermal method, and perylene bisimide dye was incorporated into its channels by impregnation. The absorption, FTIR, fluorescence emission, and decay spectra of perylene bisimide dye in CHCl3 and in MCM-41 were studied to investigate the effect of the one-dimensional channel of MCM-41 on the photophysical and photochemical properties of the dye. The results indicated that the nanochannels of MCM-41 shifted the absorption and emission maxima to red and broadened the spectra, with loss of vibrational structure. The fluorescence decay curves fitted a double-exponential function and the lifetime of perylene bisimide dye in MCM-41 was prolonged. The huge surface area of the mesoporous molecular sieve MCM-41 prevented aggregation of dye molecules, which can thus be used at high concentration.


Perylene bisimide dye MCM-41 Absorption Fluorescence 


  1. 1.
    C.C. Yang, J.Y. Wey, T.H. Liou, Y.J. Li, J.Y. Shih, Mater. Chem. Phys. 132, 431 (2012)CrossRefGoogle Scholar
  2. 2.
    S.J. Xu, Y.F. Luo, W. Zhong, Sol. Energy 85, 2826 (2011)CrossRefGoogle Scholar
  3. 3.
    C.J. Qin, A. Islam, L.Y. Han, Dyes Pigm. 94, 553 (2012)CrossRefGoogle Scholar
  4. 4.
    M. Ziólek, C. Martín, M.T. Navarro, H. Garcia, A. Douhal, J. Phys. Chem. C 115, 8858 (2011)CrossRefGoogle Scholar
  5. 5.
    C. Martín, M. Ziólek, M. Marchena, A. Douhal, J. Phys. Chem. C 115, 23183 (2011)CrossRefGoogle Scholar
  6. 6.
    D.M. Li, W.J. Zhao, X.D. Sun, J.L. Zhang, M. Anpo, J.C. Zhao, Dyes Pigm. 68, 33 (2006)CrossRefGoogle Scholar
  7. 7.
    D.M. Li, J.L. Zhang, M. Anpo, J. Lumin. 116, 73 (2006)CrossRefGoogle Scholar
  8. 8.
    D.M. Li, J.L. Zhang, M. Anpo, M.Z. Xue, Y.G. Liu, Mater. Lett. 59, 2120 (2005)CrossRefGoogle Scholar
  9. 9.
    W.J. Zhao, D.M. Li, B. He, J.L. Zhang, J.Z. Huang, L.Z. Zhang, Dyes Pigm. 64, 265 (2005)CrossRefGoogle Scholar
  10. 10.
    Y.F. Shao, L.Z. Wang, J.L. Zhang, M. Anpo, J. Photochem. Photobiol. A 180, 59 (2006)CrossRefGoogle Scholar
  11. 11.
    L.Z. Wang, Y.L. Liu, F. Chen, J.L. Zhang, M. Anpo, J. Phys. Chem. C 111, 5541 (2007)CrossRefGoogle Scholar
  12. 12.
    C.H. Christiane, M.L. Stefan, R. Michaela, H. Andreas, A.H. Saif, T. Mukundan, K. Jürgen, J. Phys. Chem. B 114, 9148 (2010)CrossRefGoogle Scholar
  13. 13.
    S. Yuki, I. Hiroshi, A. Chihaya, J. Phys. Chem. C 113, 15454 (2009)CrossRefGoogle Scholar
  14. 14.
    M.H. Georg, F.W. David, R.S. Jonathan, F.B. Stromberg, H. Dewey, L.S. Jonathan, J.M. Gerald, J. Phys. Chem. B 110, 25440 (2006)Google Scholar
  15. 15.
    D. Avnir, D. Levy, R. Reisfeld, J. Phys. Chem. 88, 5956 (1984)CrossRefGoogle Scholar
  16. 16.
    C.M. Carbonaro, A. Anedda, S. Grandi, A. Magistris, J. Phys. Chem. B 110, 12932 (2006)CrossRefGoogle Scholar
  17. 17.
    A. Ghanadzadeh, M.A. Zanjanchi, Spectrochim. Acta. A 57, 1865 (2001)CrossRefGoogle Scholar
  18. 18.
    R. Reisfeld, R. Zusman, Y. Cohen, M. Eyal, Chem. Phys. Lett. 147, 142 (1988)CrossRefGoogle Scholar
  19. 19.
    F. Hoffmann, M. Cornelius, J. Morell, M. Fröba, Angew. Chem. Int. Ed. 45, 3216 (2006)CrossRefGoogle Scholar
  20. 20.
    B.H. Wouters, T. Chen, M. Dewilde, P.J. Grobet, Micropor. Mesopor. Mater. 44, 453 (2001)CrossRefGoogle Scholar
  21. 21.
    F.L. Castro, J.G. Santos, G.J.T. Fernandes, A.S. Araújo, V.J. Fernandes, M.J. Politi, S. Brochsztain, Micropor. Mesopor. Mater. 102, 258 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Key Laboratory of Chemical Sensing and Analysis in Universities of ShandongSchool of Chemistry and Chemical Engineering, University of JinanJinanChina
  2. 2.Lab for Advanced Materials and Institute of Fine ChemicalsEast China University of Science and TechnologyShanghaiChina

Personalised recommendations