Research on Chemical Intermediates

, Volume 39, Issue 4, pp 1633–1644 | Cite as

Effect of Ag doping concentration on the electronic and optical properties of anatase TiO2: a DFT-based theoretical study

  • Matiullah Khan
  • Junna Xu
  • Ning Chen
  • Wenbin Cao
  • Asadullah
  • Zahid Usman
  • D. F. Khan


The electronic and optical properties of pure and Ag-doped anatase TiO2 have been calculated by spin-polarized density functional theory. Ag-doped TiO2 with different Ag doping concentrations ranging from 2.08 to 8.33 % was investigated, and the electronic and optical properties evaluated. Substitutional Ag doped at Ti sites introduced Ag 4d states just above the valence-band maximum, which may help in shifting visible-light excited electrons to the conduction band. Our results show that increasing the doping concentration will enhance visible-light absorption up to Ag doping concentration of 6.25 %; however, further increase of the doping concentration leads to a decrease in visible-light absorption. These results indicate the possibility of tailoring the band gap and optical absorption of TiO2 doped with Ag by varying the doping concentration. The enhanced visible-light absorption for Ag-doped TiO2 with doping concentration of 6.25 % may be due to the existence of widely distributed Ag 4d states above the valence-band maximum and the optimal doping concentration. Ag doping shifted the absorption edge of TiO2 towards visible light, consistent with recent experimental results. Our calculation results provide a reasonable explanation for the experimental findings.


Ag-doped TiO2 DFT Optimal doping 



This work has been financially supported by the National Natural Science Foundation of China (grant no. 51072019), the National High Technology Research and Development Program of China (grant no. 2012AA030302), and the Opening Project of State Key Laboratory of High Performance Ceramics and Superfine Microstructure under grant SKL201112SIC.


  1. 1.
    K.G. Grigorov, I.C. Oliveira, H.S. Maciel, M. Massi, J.M.S. Oliveira, J. Amorim, C.A. Cunha, Surf. Sci. 605, 775 (2011)CrossRefGoogle Scholar
  2. 2.
    Y. Ma, J. Zhang, B. Tian, F. Chen, L. Wang, J. Hazard. Mater. 82, 386 (2010)CrossRefGoogle Scholar
  3. 3.
    Z. Liu, Y. Wang, W. Chu, Z. Li, C. Ge, J. Alloys Compd. 501, 54 (2010)CrossRefGoogle Scholar
  4. 4.
    S. Livraghi, A.M. Czoska, M.C. Paganini, E. Giamello, J. Solid State Chem. 182, 160 (2009)CrossRefGoogle Scholar
  5. 5.
    Y. Su, Y. Xiao, Y. Li, Y. Du, Y. Zhang, Mater. Chem. Phys. 126, 761 (2011)CrossRefGoogle Scholar
  6. 6.
    M. Xing, J. Zhang, F. Chen, Appl. Catal. B 89, 563 (2009)CrossRefGoogle Scholar
  7. 7.
    C. He, Y. Yu, X. Hu, A. Larbot, Appl. Surf. Sci. 200, 239 (2002)CrossRefGoogle Scholar
  8. 8.
    I.E. Saliby, L. Erdei, H.K. Shon, J.H. Kim, J. Ind. Eng. Chem. 17, 358 (2011)CrossRefGoogle Scholar
  9. 9.
    C. Di Valentin, G. Pacchioni, A. Selloni, S. Livraghi, E. Giamello, J. Phys. Chem. B 109, 1141 (2005)CrossRefGoogle Scholar
  10. 10.
    V.C. Stengl, S. Bakardjieva, J. Phys. Chem. C 114, 19308 (2010)CrossRefGoogle Scholar
  11. 11.
    N. Couselo, F.S. Garcia Einschlag, R.J. Candal, M. Jobbagy, J. Phys. Chem. C 112, 1094 (2008)CrossRefGoogle Scholar
  12. 12.
    X. Yu, C. Li, H. Tang, Y. Ling, T.A. Tang, Q. Wu, J. Kong, Comput. Mater. Sci. 49, 430 (2010)CrossRefGoogle Scholar
  13. 13.
    L.G. Devi, B.N. Murthy, S.G. Kumar, J. Mol. Catal. A: Chem. 308, 174 (2009)CrossRefGoogle Scholar
  14. 14.
    S. Livraghi, M.R. Chierotti, E. Giamello, G. Magnacca, M.C. Paganini, G. Cappelletti, C.L. Bianchi, J. Phys. Chem. C 112, 17244 (2008)CrossRefGoogle Scholar
  15. 15.
    D. Wu, M. Long, W. Cai, C. Chen, Y. Wu, J. Alloys Compd. 502, 289 (2010)CrossRefGoogle Scholar
  16. 16.
    F. Spadavecchia, G. Cappelletti, S. Ardizzone, M. Ceotto, L. Falciola, J. Phys. Chem. C 115, 6381 (2011)CrossRefGoogle Scholar
  17. 17.
    X. Han, G. Shao, J. Phys. Chem. C 115, 8274 (2011)CrossRefGoogle Scholar
  18. 18.
    L. Jia, C. Wu, S. Han, N. Yao, Y. Li, Z. Li, B. Chi, J. Pu, L. Jian, J. Alloys Compd. 509, 6067 (2011)CrossRefGoogle Scholar
  19. 19.
    K. Yang, Y. Dai, B. Huang, S. Han, J. Phys. Chem. B 110, 24011 (2006)CrossRefGoogle Scholar
  20. 20.
    K. Yang, Y. Dai, B. Huang, J. Phys. Chem. C 111, 12086 (2007)CrossRefGoogle Scholar
  21. 21.
    K. Yang, Y. Dai, B. Huang, M.H. Whangbo, J. Phys. Chem. C 113, 2624 (2009)CrossRefGoogle Scholar
  22. 22.
    J. Lu, Y. Dai, M. Guo, L. Yu, K. Lai, B. Huang, Appl. Phys. Lett. 100, 102114 (2012)CrossRefGoogle Scholar
  23. 23.
    J. Zhou, Y. Zhang, X.S. Zhao, A.K. Ray, Ind. Eng. Chem. Res. 45, 3503 (2006)CrossRefGoogle Scholar
  24. 24.
    A. Zielinska, E. Kowalska, J.W. Sobczak, I. Lacka, M. Gazda, B. Ohtani, J. Hupka, A. Zaleska, Sep. Purif. Technol. 72, 309 (2010)CrossRefGoogle Scholar
  25. 25.
    Y. Yonezawa, N. Kometani, T. Sakaue, A. Yano, J. Photochem. Photobiol., A 171, 1 (2005)CrossRefGoogle Scholar
  26. 26.
    K. Kawahara, K. Suzuki, Y. Ohko, T. Tatsuma, Phys. Chem. Chem. Phys. 7, 3851 (2005)CrossRefGoogle Scholar
  27. 27.
    A.A. Ashkarran, S.M. Aghigh, M. kavianipour, N. J. Farahani. Curr. Appl. Phys. 11, 1048 (2011)CrossRefGoogle Scholar
  28. 28.
    Y. Li, M. Ma, W. Chen, L. Li, M. Zen, Mater. Chem. Phys. 129, 501 (2011)CrossRefGoogle Scholar
  29. 29.
    N. Sobana, K. Selvam, M. Swaminathan, Sep. Purif. Technol. 62, 648 (2008)CrossRefGoogle Scholar
  30. 30.
    B. Zhao, Y.W. Chen, J. Phys. Chem. Solids 72, 1312 (2011)CrossRefGoogle Scholar
  31. 31.
    Y. Yuan, J. Ding, J. Xu, J. Deng, J. Guo, J. Nanosci. Nanotechnol. 10, 4868 (2010)CrossRefGoogle Scholar
  32. 32.
    S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.I.J. Probert, K. Refson, M.C. Payne, Z. Kristallogr. 220, 567 (2005)CrossRefGoogle Scholar
  33. 33.
    R.S. Zhang, Y. Liu, Q. Gao, F. Teng, C.L. Song, W. Wang, G.R. Han, J. Alloys Compd. 509, 9178 (2011)CrossRefGoogle Scholar
  34. 34.
    R. Long, N.J. English, J. Phys. Chem. C 114, 11984 (2010)CrossRefGoogle Scholar
  35. 35.
    G. Shao, J. Phys. Chem. C 113, 6800 (2009)CrossRefGoogle Scholar
  36. 36.
    Z. Zhou, M. Li, L. Guo, J. Phys. Chem. Solids 71, 1707 (2010)CrossRefGoogle Scholar
  37. 37.
    R. Long, N.J. English, Chem. Phys. Lett. 478, 175 (2009)CrossRefGoogle Scholar
  38. 38.
    J.K. Burdett, T. Hughbanks, G.J. Miller, J.W. Richardson, J.V. Smith, J. Am. Chem. Soc. 109, 3639 (1987)CrossRefGoogle Scholar
  39. 39.
    C. Stampfl, C.G. Van de Walle, Phys. Rev. B 59, 5521 (1999)CrossRefGoogle Scholar
  40. 40.
    M. Khan, J. Xu, N. Chen, W. Cao, J. Alloys Compd. 513, 539 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Matiullah Khan
    • 1
    • 4
  • Junna Xu
    • 1
  • Ning Chen
    • 1
  • Wenbin Cao
    • 1
  • Asadullah
    • 2
  • Zahid Usman
    • 3
  • D. F. Khan
    • 2
  1. 1.Department of Inorganic Nonmetallic MaterialsSchool of Materials Science and Engineering, University of Science and Technology Beijing (USTB)BeijingChina
  2. 2.School of Materials Science and EngineeringUniversity of Science and Technology Beijing (USTB)BeijingChina
  3. 3.School of Material Science and Engineering, Beijing Institute of TechnologyBeijingChina
  4. 4.Physics DepartmentUniversity of Science and Technology BannuBannuPakistan

Personalised recommendations