Skip to main content
Log in

Hybrid films prepared from latex particles incorporating metal oxide nanoparticles

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Metal oxide (ZrO2) nanoparticle-dispersed polymer films (hybrid latex films) were prepared from polymer particles incorporating ZrO2 nanoparticles (hybrid latex dispersion). The hybrid latex dispersions were synthesized by miniemulsion polymerization. The resulting films were transparent, and they derived their properties from the ZrO2 nanoparticles. The refractive indexes of the films increased with the ZrO2 content. Surface-modified ZrO2 nanoparticles were dispersed successfully in a polymer matrix containing phosphoric acid groups, which interacts with the surfaces of the ZrO2 nanoparticles and increases the compatibility between the polymer and ZrO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. The contrast of acryl polymer component is lower than that of ZrO2 and the acryl polymer particles are easy to coalesce. The images of the isolated particles (left) and the packed particles (right) are shown for 1a. In the hybrid particles 15, 7, 8 except 1c, the acryl polymer component (acryl polymer particle) is barely identified.

  2. n-Butyl acrylate and ethylene glycol methacrylate phosphate, which is a typical commercial available monomer having phosphoric acid group, were immiscible. This will be for the difference of polarity between the monomers. In contrast, PGMP was miscible with n-butyl acrylate probably owing to the polypropylene glycol chain, and could increase the compatibility between the acrylic polymer and ZrO2 to form transparent hybrid films as described above. However, in the hybrid film prepared from 4, the excess amount of the phosphoric acid group of PGMP might potentially aggregate and cause the phase separation even in the presence of the polypropylene glycol chain.

References

  1. M. Inkyo, Y. Tokunaga, T. Tahara, T. Iwaki, F. Iskandar, C.J. Hogan Jr., K. Okuyama, Ind. Eng. Chem. Res. 47, 2597 (2008)

    Article  CAS  Google Scholar 

  2. Y. Imai, A. Terahara, Y. Hakuta, K. Matsui, H. Hayashi, N. Ueno, Eur. Polym. J. 45, 630 (2009)

    Article  CAS  Google Scholar 

  3. S. Yamada, Z. Wang, K. Yoshinaga, Chem. Lett. 38, 828 (2009)

    Article  CAS  Google Scholar 

  4. D. Nagao, T. Kinoshita, A. Watanabe, M. Konno, Polym. Int. 60, 1180 (2011)

    Article  CAS  Google Scholar 

  5. H.I. Elim, B. Cai, Y. Kurata, O. Sugihara, T. Kaino, T. Adschiri, A.L. Chu, N. Kambe, J. Phys. Chem. B 113, 10143 (2009)

    Article  CAS  Google Scholar 

  6. T. Suzuki, Y. Ito, B. Boury, Y. Sugahara, Chem. Lett. 36, 856 (2007)

    Article  CAS  Google Scholar 

  7. Y. Minami, K. Murata, S. Watase, K. Matsukawa, Kobunshi Ronbunshu 67, 397 (2010)

    Article  CAS  Google Scholar 

  8. T. Tamai, M. Watanabe, Y. Minami, S. Okazaki, A. Masuyama, K. Matsukawa, Chem. Lett. 40, 37 (2011) (preliminary communication)

    Google Scholar 

  9. E. Schreiber, U. Ziener, A. Manzke, A. Plettl, P. Ziemann, K. Landfester, Chem. Mater. 21, 1750 (2009)

    Article  CAS  Google Scholar 

  10. D. Suzuki, H. Kawaguchi, Langmuir 21, 8175 (2005)

    Article  CAS  Google Scholar 

  11. N. Yamauchi, D. Nagao, M. Konno, Colloid Polym. Sci. 288, 55 (2010)

    Article  CAS  Google Scholar 

  12. A. Schmid, S. Fujii, S.P. Armes, C.A.P. Leite, F. Galembeck, H. Minami, N. Saito, M. Okubo, Chem. Mater. 19, 2435 (2007)

    Article  CAS  Google Scholar 

  13. T. Tamai, M. Watanabe, Y. Hatanaka, H. Tsujiwaki, N. Nishioka, K. Matsukawa, Langmuir 24, 14203 (2008)

    Article  CAS  Google Scholar 

  14. T. Tamai, M. Watanabe, H. Maeda, K. Mizuno, J. Polym. Sci. Part A 46, 1470 (2008)

    Article  CAS  Google Scholar 

  15. H. Maeda, T. Maeda, K. Mizuno, K. Fujimoto, H. Shimizu, M. Inouye, Chem. Eur. J. 12, 824 (2006)

    Article  CAS  Google Scholar 

  16. M.A. Winnik, in Emulsion Polymerization and Emulsion Polymers, ed. by P.A. Lovell, M.S. El-Aasser (Wiley, New York, 1997), p. 467

    Google Scholar 

  17. T. Tamai, P. Pinenq, M.A. Winnik, Macromolecules 32, 6102 (1999)

    Article  CAS  Google Scholar 

  18. M. Watanabe, T. Tamai, Langmuir 23, 3062 (2007)

    Article  CAS  Google Scholar 

  19. H. Luo, C.M. Cardinal, L.E. Scriven, L.F. Francis, Langmuir 24, 5552 (2008)

    Article  CAS  Google Scholar 

  20. P.H. Mutin, G. Guerrero, A. Vioux, J. Mater. Chem. 15, 3761 (2005)

    Article  CAS  Google Scholar 

  21. C.J. Lomoschitz, B. Feichtenschlager, N. Moszner, M. Puchberger, K. Muller, M. Abele, G. Kickelbick, Langmuir 27, 3534 (2011)

    Article  CAS  Google Scholar 

  22. A. Zeller, A. Musyanovych, M. Kappl, A. Ethirajan, M. Dass, D. Markova, M. Klapper, K. Landfester, ACS Appl. Mater. Interface 2, 2421 (2010)

    Article  CAS  Google Scholar 

  23. D.E. Aspnes, Am. J. Phys. 50, 704 (1982)

    Article  Google Scholar 

Download references

Acknowledgments

This study was partly supported by a Grant-in-Aid for Scientific Research (C) (22550138) from the Ministry of Education, Culture, Sports, Science and Technology of Japan. We thank Uni-Chemical Co. Ltd. for providing chemicals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiyuki Tamai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tamai, T., Okazaki, S., Watanabe, M. et al. Hybrid films prepared from latex particles incorporating metal oxide nanoparticles. Res Chem Intermed 39, 291–300 (2013). https://doi.org/10.1007/s11164-012-0649-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-012-0649-z

Keywords

Navigation