Skip to main content
Log in

Systematic study on the thermal cycloreversion reactivity of diarylethenes with alkoxy and alkyl groups at the reactive carbons

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The relationship between the thermal cycloreversion reactivity of diarylethenes and the bulkiness of the substituents at the reactive carbons was systematically investigated. Two photochromic diarylethenes, 1,2-bis(2-isobutoxy-5-phenyl-3-thienyl)perfluorocyclopentene (1a) and 1,2-bis(2-neopentoxy-5-phenyl-3-thienyl)perfluorocyclopentene (2a), were newly synthesized and their optical properties and thermal cycloreversion reactivity were examined, because there is insufficient data for diarylethenes with alkoxy groups at the reactive carbons. The steric substituent constant was employed to correlate the relationship between the thermal cycloreversion reactivity of diarylethenes with alkyl and alkoxy groups at the reactive carbons and the bulkiness of the substituent. A good correlation was obtained for the substituent constant using CH2 instead of oxygen in the alkoxy groups. The results indicate that this is a very useful strategy for the design of novel diarylethenes with desired thermal cycloreversion reactivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. G.H. Brown, Photochromism (Wiley-Interscience, New York, 1971)

    Google Scholar 

  2. H. Dürr, H. Bouas-Laurent, Photochromism: Molecules and Systems (Elsevier, Amsterdam, 2003)

    Google Scholar 

  3. J.C. Crano, T. Flood, D. Knowles, A. Kumar, B.V. Gemert, Pure Appl. Chem. 68, 1395–1398 (1996)

    Article  CAS  Google Scholar 

  4. M. Irie, Chem. Rev. 100, 1685–1716 (2000)

    Article  CAS  Google Scholar 

  5. M. Irie, T. Fukaminato, T. Sasaki, N. Tamai, T. Kawai, Nature 420, 759–760 (2002)

    Article  CAS  Google Scholar 

  6. B.L. Feringa, Molecular Switches (Wiley-VCH, Weinheim, 2001)

    Book  Google Scholar 

  7. C. Bechinger, S. Ferrer, A. Zaban, J. Sprague, B.A. Gregg, Nature 383, 608–610 (1996)

    Article  CAS  Google Scholar 

  8. J.A. Delaire, K. Nakatani, Chem. Rev. 100, 1817–1846 (2000)

    Article  CAS  Google Scholar 

  9. S. Kobatake, S. Takami, H. Muto, T. Ishikawa, M. Irie, Nature 446, 778–781 (2007)

    Article  CAS  Google Scholar 

  10. S. Nakamura, M. Irie, J. Org. Chem. 53, 6136–6138 (1988)

    Article  CAS  Google Scholar 

  11. S.L. Gilat, S.H. Kawai, J.M. Lehn, Chem. Eur. J. 1, 275–284 (1995)

    Article  CAS  Google Scholar 

  12. S. Nakamura, S. Yokojima, K. Uchida, T. Tsujioka, A. Goldberg, A. Murakami, K. Shinoda, M. Mikami, T. Kobayashi, S. Kobatake, K. Matsuda, M. Irie, J. Photochem. Photobiol. A 200, 10–18 (2008)

    Article  CAS  Google Scholar 

  13. M. Irie, T. Lifka, S. Kobatake, N. Kato, J. Am. Chem. Soc. 122, 4871–4876 (2000)

    Article  CAS  Google Scholar 

  14. S. Kobatake, K. Shibata, K. Uchida, M. Irie, J. Am. Chem. Soc. 122, 12135–12141 (2000)

    Article  CAS  Google Scholar 

  15. S. Kobatake, K. Uchida, E. Tsuchida, M. Irie, Chem. Lett. 11, 1340–1341 (2000)

    Article  Google Scholar 

  16. D. Chen, Z. Wang, H. Zhang, J. Mol. Struct. 859, 11–17 (2008)

    CAS  Google Scholar 

  17. D. Kitagawa, K. Sasaki, S. Kobatake, Bull. Chem. Soc. Jpn. 84, 141–147 (2011)

    Article  CAS  Google Scholar 

  18. R.W. Taft Jr, J. Am. Chem. Soc. 74, 3120–3128 (1952)

    Article  CAS  Google Scholar 

  19. C.K. Hancock, E.A. Meyers, B.J. Yager, J. Am. Chem. Soc. 83, 4211–4213 (1961)

    Article  CAS  Google Scholar 

  20. M. Charton, J. Am. Chem. Soc. 97, 1552–1556 (1975)

    Article  CAS  Google Scholar 

  21. K. Morimitsu, K. Shibata, S. Kobatake, M. Irie, J. Org. Chem. 67, 4574–4578 (2002)

    Article  CAS  Google Scholar 

  22. Y. Yokoyama, Y. Kurita, J. Synth. Org. Chem. Jpn. 49, 364–372 (1991)

    Article  CAS  Google Scholar 

  23. M. Irie, O. Miyatake, K. Uchida, J. Am. Chem. Soc. 114, 8715–8716 (1992)

    Article  CAS  Google Scholar 

  24. D. Guillaumont, T. Kobayashi, K. Kanda, H. Miyasaka, K. Uchida, S. Kobatake, K. Shibata, S. Nakamura, M. Irie, J. Phys. Chem. A 106, 7222–7227 (2002)

    Article  CAS  Google Scholar 

  25. K. Morimitsu, K. Shibata, S. Kobatake, M. Irie, Chem. Lett. 31, 572–573 (2002)

    Article  Google Scholar 

  26. C. Hansch, A. Leo, Substituent Constants for Correlation Analysis in Chemistry and Biology (Wiley, New York, 1979)

    Google Scholar 

Download references

Acknowledgments

This work was partly supported by the Adaptable and Seamless Technology transfer Program (A-STEP) through target-driven R&D, FS-Stage (Exploratory Research) from the Japan Science and Technology Agency (JST). The authors also thank Nippon Zeon Co. Ltd. for providing octafluorocyclopentene.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seiya Kobatake.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shoji, H., Kitagawa, D. & Kobatake, S. Systematic study on the thermal cycloreversion reactivity of diarylethenes with alkoxy and alkyl groups at the reactive carbons. Res Chem Intermed 39, 279–289 (2013). https://doi.org/10.1007/s11164-012-0648-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-012-0648-0

Keywords

Navigation