Skip to main content
Log in

Oxygenation and chlorination of aromatic hydrocarbons with hydrochloric acid photosensitized by 9-mesityl-10-methylacridinium under visible light irradiation

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Efficient photocatalytic oxygenation of toluene occurs under visible light irradiation of 9-mesityl-10-methylacridinium (Acr+–Mes) in oxygen-saturated acetonitrile containing toluene and aqueous hydrochloric acid with a xenon lamp for 15 h. The oxygenated products, benzoic acid (70 %) and benzaldehyde (30 %), were formed after the photoirradiation. The photocatalytic reaction is initiated by intramolecular photoinduced electron transfer from the mesitylene moiety to the singlet excited state of the Acr+ moiety of Acr+–Mes, which affords the electron-transfer state, Acr–Mes•+. The Mes•+ moiety can oxidize chloride ion (Cl) by electron transfer to produce chlorine radical (Cl), whereas the Acr moiety can reduce O2 to O •−2 . The Cl radical produced abstracts a hydrogen from toluene to afford benzyl radical in competition with the bimolecular radical coupling of Cl. The benzyl radical reacts with O2 rapidly to afford the peroxyl radical, leading to the oxygenated product, benzaldehyde. Benzaldehyde is readily further photooxygenated to yield benzoic acid with Acr–Mes•+. In the case of an aromatic compound with electron-donating substituents, 1,3,5-trimethoxybenzene, photocatalytic chlorination occurred efficiently under the same photoirradiation conditions to yield a monochloro-substituted compound, 2,4,6-trimethoxychlorobenzene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 2

Similar content being viewed by others

References

  1. R.C. Larock, Comprehensive organic transformations: a guide to functional group preparations (Wiley, New York, 1999)

    Google Scholar 

  2. I. Hermans, E.S. Spier, U. Neunschwanedr, N. Turrá, A. Baiker, Top. Catal. 52, 1162–1174 (2009)

    Article  CAS  Google Scholar 

  3. M.B. Smith (ed), in March’s Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 6th edn. (Wiley, New York, 2007), pp. 698–705

  4. R.C. Larock (ed), in Comprehensive Organic Transformations, 2nd edn. (Wiley, New York, 1999), pp. 622–624

  5. A. Bottino, G. Capannelli, F. Cerutti, A. Comite, R. Di Felice, Chem. Eng. Res. Des. 82, 229–235 (2004)

    Article  CAS  Google Scholar 

  6. D. Dumitriu, R. Barjega, L. Frunza, D. Macovei, T. Hu, Y. Xie, V.I. Parvulescu, S. Kaliaguine, J. Catal. 219, 337–351 (2003)

    Article  CAS  Google Scholar 

  7. Y. Ishii, S. Sakaguchi, Catal. Surv. Jpn. 3, 27–35 (1999)

    Article  CAS  Google Scholar 

  8. R. Bandyopadhyay, S. Biswas, S. Guha, A.K. Mukherjee, R. Bhattacharyya, Chem. Commun. 1627–1628 (1999)

  9. V.R. Durvasula, Synlett 495–496 (1992)

  10. G. Barak, Y. Sasson, J. Chem. Soc., Chem. Commun. 637–638 (1988)

  11. W. Bartok, D.D. Rosenfeld, A. Schriesheim, J. Org. Chem. 28, 410–412 (1963)

    Article  Google Scholar 

  12. R.A. Sheldon, J. Chem. Technol. Biotechnol. 68, 381–388 (1997)

    Article  CAS  Google Scholar 

  13. R.A. Sheldon, Chem. Ind. (London) 12–15 (1997)

  14. T. Funabiki (ed) in Oxygenases and Model Systems. (Kluwer, Dordrecht, 1997)

  15. D.H.R. Barton, A.E. Martell, D.T. Sawyer, The activation of dioxygen and homogeneous catalytic oxidation (Plenum, New York, 1993)

    Book  Google Scholar 

  16. L.L. Simandi, Dioxygen activation and homogeneous catalytic oxidation (Elsevier, Amsterdam, 1991)

    Google Scholar 

  17. F. Müller, J. Mattay, Chem. Rev. 93, 99–117 (1993)

    Article  Google Scholar 

  18. J. Mattay, V. Martin, Top. Curr. Chem. 159, 219–255 (1991)

    Article  CAS  Google Scholar 

  19. M.A. Fox, M. Chanon (eds.), in Photoinduced Electron Transfer. (Elsevier, Amsterdam, 1988)

  20. M. Julliard, M. Chanon, Chem. Rev. 83, 425–506 (1983)

    Article  CAS  Google Scholar 

  21. M. Julliard, C. Legris, M. Chanon, J. Photochem, Photobiol. A Chem. 61, 137–152 (1991)

    Article  CAS  Google Scholar 

  22. M. Julliard, A. Galadi, M. Chanon, J. Photochem. Photobiol. A Chem. 54, 79–90 (1990)

    Article  CAS  Google Scholar 

  23. L. Lopez, Top. Curr. Chem. 156, 117–166 (1990)

    Article  CAS  Google Scholar 

  24. A. Heumann, M. Chanon, in Applied Homogeneous Catalysis with Organometallic Compounds, ed. by B. Cornils, W.A. Herrmann (VCH, Weinheim, 1996), pp 929–948

  25. W.P. Todd, J.P. Dinnocenzo, S. Farid, J.L. Goodman, I.R. Gould, J. Am. Chem. Soc. 113, 3601–3602 (1991)

    Article  CAS  Google Scholar 

  26. K. Ohkubo, K. Suga, K. Morikawa, S. Fukuzumi, J. Am. Chem. Soc. 125, 12850–12859 (2003)

    Article  CAS  Google Scholar 

  27. K. Suga, K. Ohkubo, S. Fukuzumi, J. Phys. Chem. A 109, 10168–10175 (2005)

    Article  CAS  Google Scholar 

  28. K. Ohkubo, K. Suga, S. Fukuzumi, Chem. Commun. 2018–2020 (2006)

  29. K. Ohkubo, S. Fukuzumi, Org. Lett. 2, 3647–3650 (2000)

    Article  CAS  Google Scholar 

  30. K. Ohkubo, S. Fukuzumi, Bull. Chem. Soc. Jpn. 82, 303–315 (2009)

    Article  CAS  Google Scholar 

  31. S. Fukuzumi, H. Kotani, K. Ohkubo, S. Ogo, N.V. Tkachenko, H. Lemmetyinen, J. Am. Chem. Soc. 126, 1600–1601 (2004)

    Article  CAS  Google Scholar 

  32. K. Ohkubo, H. Kotani, S. Fukuzumi, Chem. Commun. 4520–4522 (2005)

  33. K. Ohkubo, K. Mizushima, R. Iwata, K. Souma, N. Suzuki, S. Fukuzumi, Chem. Commun. 46, 601–603 (2010)

    Article  CAS  Google Scholar 

  34. S. Fukuzumi, K. Ohkubo, T. Suenobu, K. Kato, M. Fujitsuka, O. Ito, J. Am. Chem. Soc. 123, 8459–8467 (2001)

    Article  CAS  Google Scholar 

  35. R.D. Mair, A.J. Graupner, Anal. Chem. 36, 194–204 (1964)

    Article  CAS  Google Scholar 

  36. S. Fukuzumi, S. Kuroda, T. Tanaka, J. Am. Chem. Soc. 107, 3020–3027 (1985)

    Article  CAS  Google Scholar 

  37. S. Fukuzumi, M. Ishikawa, T. Tanaka, J. Chem. Soc. Perkin Trans. 2, 1037–1045 (1989)

    Google Scholar 

  38. C.G. Hatchard, C.A. Parker, Proc. R. Soc. London Ser. A 235, 518–536 (1956)

    Article  CAS  Google Scholar 

  39. K. Ohkubo, A. Fujimoto, S. Fukuzumi, Chem. Commun. 47, 8515–8517 (2011)

    Article  CAS  Google Scholar 

  40. A.C. Benniston, K.J. Elliott, R.W. Harrington, W. Clegg, Eur. J. Org. Chem. 2, 253–258 (2009)

    Article  Google Scholar 

  41. A.C. Benniston, A. Harriman, P. Li, J.P. Rostron, J.W. Verhoeven, Chem. Commun. 2701–2703 (2005)

  42. A.C. Benniston, A. Harriman, P. Li, J.P. Rostron, H.J. van Ramesdonk, M.M. Groeneveld, H. Zhang, J.W. Verhoeven, J. Am. Chem. Soc. 127, 16054–16064 (2005)

    Article  CAS  Google Scholar 

  43. A.C. Benniston, A. Harriman, J.W. Verhoeven, Phys. Chem. Chem. Phys. 10, 5156–5158 (2008)

    Article  CAS  Google Scholar 

  44. H. van Willigen, G. Jones II, M.S. Farahat, J. Phys. Chem. 100, 3312–3316 (1996)

    Article  Google Scholar 

  45. S. Fukuzumi, H. Kotani, K. Ohkubo, Phys. Chem. Chem. Phys. 10, 5159–5162 (2008)

    Article  CAS  Google Scholar 

  46. S. Fukuzumi, R. Hanazaki, H. Kotani, K. Ohkubo, J. Am. Chem. Soc. 132, 11002–11003 (2010)

    Article  CAS  Google Scholar 

  47. Y. Yamada, T. Miyahigashi, H. Kotani, K. Ohkubo, S. Fukuzumi, J. Am. Chem. Soc. 133, 16136–16145 (2011)

    Article  CAS  Google Scholar 

  48. H. Kotani, K. Ohkubo, S. Fukuzumi, Faraday Disccuss. 155, 89–102 (2012)

    Google Scholar 

  49. O. Morawski, J. Prochorow, Chem. Phys. Lett. 242, 253–258 (1995)

    Article  CAS  Google Scholar 

  50. K. Kikuchi, C. Sato, M. Watabe, H. Ikeda, Y. Takahashi, T. Miyashi, J. Am. Chem. Soc. 115, 5180–5184 (1993)

    Article  CAS  Google Scholar 

  51. K. Kasama, K. Kikuchi, Y. Nishida, H. Kokubun, J. Phys. Chem. 85, 4148–4153 (1981)

    Article  CAS  Google Scholar 

  52. H. Kotani, K. Ohkubo, S. Fukuzumi, J. Am. Chem. Soc. 126, 15999–16006 (2004)

    Article  CAS  Google Scholar 

  53. K. Ohkubo, T. Nanjo, S. Fukuzumi, Org. Lett. 7, 4265–4268 (2005)

    Article  CAS  Google Scholar 

  54. K. Ohkubo, T. Nanjo, S. Fukuzumi, Catal. Today 117, 356–361 (2006)

    Article  CAS  Google Scholar 

  55. K. Ohkubo, K. Yukimoto, S. Fukuzumi, Chem. Commun. 2504–2506 (2006)

  56. K. Ohkubo, T. Nanjo, S. Fukuzumi, Bull. Chem. Soc. Jpn. 79, 1489–1500 (2006)

    Article  CAS  Google Scholar 

  57. S. Fukuzumi, Bull. Chem. Soc. Jpn. 79, 177–195 (2006)

    Article  CAS  Google Scholar 

  58. H. Kotani, K. Ohkubo, Y. Takai, S. Fukuzumi, J. Phys. Chem. B 110, 24047–24053 (2006)

    Article  CAS  Google Scholar 

  59. H. Kotani, T. Ono, K. Ohkubo, S. Fukuzumi, Phys. Chem. Chem. Phys. 9, 1487–1492 (2007)

    Article  CAS  Google Scholar 

  60. K. Ohkubo, R. Iwata, T. Yanagimoto, S. Fukuzumi, Chem. Commun. 3139–3141 (2007)

  61. H. Kotani, K. Ohkubo, S. Fukuzumi, Appl. Catal. B Environ. 77, 317–324 (2008)

    Article  CAS  Google Scholar 

  62. S. Fukuzumi, Eur. J. Inorg. Chem. 1351–1362 (2008)

  63. S. Fukuzumi, Phys. Chem. Chem. Phys. 10, 2283–2297 (2008)

    Article  CAS  Google Scholar 

  64. K. Ohkubo, K. Mizushima, R. Iwata, S. Fukuzumi, Chem. Sci. 2, 715–722 (2011)

    Article  CAS  Google Scholar 

  65. S. Fukuzumi, Y. Yamada, T. Suenobu, K. Ohkubo, H. Kotani, Energy Environ. Sci. 4, 2754–2766 (2011)

    Article  CAS  Google Scholar 

  66. K. Ohkubo, R. Iwata, S. Miyazaki, T. Kojima, S. Fukuzumi, Org. Lett. 8, 6079–6082 (2006)

    Article  CAS  Google Scholar 

  67. M. Tanaka, K. Ohkubo, C.P. Gros, R. Guilard, S. Fukuzumi, J. Am. Chem. Soc. 128, 14625–14633 (2006)

    Article  CAS  Google Scholar 

  68. M. Murakami, K. Ohkubo, T. Nanjo, K. Souma, N. Suzuki, S. Fukuzumi, Chem. Phys. Chem. 11, 2594–2605 (2010)

    Article  CAS  Google Scholar 

  69. M. Murakami, K. Ohkubo, S. Fukuzumi, Chem. Eur. J. 16, 7820–7832 (2010)

    Article  CAS  Google Scholar 

  70. T. Shida, Electronic absorption spectra of radical ions (Elsevier, Amsterdam, 1988)

    Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant-in-Aid (Nos. 20108010 and 23750014), a Global COE program from the Ministry of Education, Culture, Sports, Science and Technology, Japan and KOSEF/MEST through WCU project (R31-2008-000-10010-0), Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kei Ohkubo or Shunichi Fukuzumi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohkubo, K., Mizushima, K. & Fukuzumi, S. Oxygenation and chlorination of aromatic hydrocarbons with hydrochloric acid photosensitized by 9-mesityl-10-methylacridinium under visible light irradiation. Res Chem Intermed 39, 205–220 (2013). https://doi.org/10.1007/s11164-012-0643-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-012-0643-5

Keywords

Navigation