Skip to main content
Log in

Photochemical synthesis and electronic spectra of fulminene ([6]phenacene)

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Facile synthesis of fulminene ([6]phenacene) was achieved through the Mallory reaction of 1-(1-naphthyl)-2-(1-phenanthryl)ethene or the 9-fluorenone-sensitized photo-ring-closure of 1-(1-naphthyl)-2-(1-phenanthryl)ethane. The electronic spectral properties of fulminene were investigated for the first time using photoluminescence as well as transient absorption spectroscopy. The spectral features were compared with those of a series of lower phenacene homologs such as phenanthrene ([3]phenacene), chrysene ([4]phenacene), and picene ([5]phenacene). For the [n]phenacene series, both the fluorescence and phosphorescence bands linearly red-shifted with an increase in the number of the benzene rings (n). Trends in the energy levels of the excited singlet (E S) and the triplet (E T) states were expressed as E s = −2.6n + 89.1 (kcal mol−1) and E T = −1.8n + 66.2 (kcal mol−1), respectively. In the case of fulminene, laser flash photolysis displayed a transient spectrum with an absorption maximum (λ T–Tmax ) at 675 nm, which was assigned as the triplet fulminene excited state. The λ T–Tmax values for the [n]phenacene series showed a linear correlation as a function of the ring number n, given by an equation, λ T–Tmax  = 60n + 318 (nm).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. Randić, Aromaticity of polycyclic conjugated hydrocarbons. Chem. Rev. 103, 3449–3605 (2003). and references therein

    Article  Google Scholar 

  2. J.E. Anthony, Functionalized acenes and heteroacenes for organic electronics. Chem. Rev. 106, 5028–5048 (2006)

    Article  CAS  Google Scholar 

  3. Y. Yamashita, Organic semiconductors for organic field-effect transistors. Sci. Technol. Adv. Mater. 10, 024313 (2009)

    Article  Google Scholar 

  4. R. Mondal, B.K. Shah, D.C. Neckers, Photogeneration of heptacene in a polymer matrix. J. Am. Chem. Soc. 128, 9612–9613 (2006)

    Article  CAS  Google Scholar 

  5. R. Mondal, C. ToÃànshoff, D. Khon, D.C. Neckers, H.F. Bettinger, Synthesis, stability, and photochemistry of pentacene, hexacene, and heptacene: a matrix isolation study. J. Am. Chem. Soc. 131, 14281–14289 (2009)

    Article  CAS  Google Scholar 

  6. C. Tönshoff, H.F. Bettinger, Photogeneration of octacene and nonacene Angew. Chem. Int. Ed. 49, 4125–4128 (2010)

    Article  Google Scholar 

  7. I. Kaur, W. Jia, R.P. Kopreski, S. Selvarasah, M.R. Dokmeci, C. Pramanik, N.E. McGruer, G.P. Miller, Substituent effects in pentacenes: gaining control over HOMO-LUMO gaps and photooxidative resistances. J. Am. Chem. Soc. 130, 16274–16286 (2008)

    Article  CAS  Google Scholar 

  8. I. Kaur, M. Jazdzyk, N.N. Stein, P. Prusevich, G.P. Miller, Design, synthesis, and characterization of a persistent nonacene derivative. J. Am. Chem. Soc. 132, 1261–1263 (2010)

    Article  CAS  Google Scholar 

  9. G. Portella, J. Poater, J.M. Bofill, P. Alemany, M. Solà, Local aromaticity of [n]acenes, [n]phenacenes, and [n]helicenes (n = 1–9). J. Org. Chem. 70, 2509–2521 (2005)

    Article  CAS  Google Scholar 

  10. F.B. Mallory, K.E. Butler, A.C. Evans, C.W. Mallory, Phenacenes: a family of graphite ribbons. 1. Syntheses of some [7]phenacenes by stilbene-like photocyclizations. Tetrahedron Lett. 40, 7173–7176 (1996)

    Article  Google Scholar 

  11. F.B. Mallory, K.E. Butler, A.C. Evans, E.J. Brondyke, C.W. Mallory, C. Yang, A. Ellenstein, Phenacenes: a family of graphite ribbons. 2. Syntheses of some [7]phenacenes and an [11]phenacene by stilbene-like photocyclizations. J. Am. Chem. Soc. 119, 2119–2124 (1997)

    Article  CAS  Google Scholar 

  12. F.B. Mallory, K.E. Butler, A. Bérubé, E.D. Luzik Jr, C.W. Mallory, E.J. Brondyke, R. Hiremath, P. Ngo, P.J. Carroll, Phenacenes: a family of graphite ribbons. Part 3: Iterative strategies for the synthesis of large phenacenes. Tetrahedron 57, 3715–3724 (2001)

    Article  CAS  Google Scholar 

  13. H. Okamoto, N. Kawasaki, Y. Kaji, Y. Kubozono, A. Fujiwara, M. Yamaji, Air-assisted high-performance field-effect transistor with thin films of picene. J. Am. Chem. Soc. 130, 10470–10471 (2008)

    Article  CAS  Google Scholar 

  14. Y. Sugawara, Y. Kaji, K. Ogawa, R. Eguchi, S. Oikawa, S. Gohda, A. Fujiwara, Y. Kubozono, Characteristics of field-effect transistors using the one-dimensional extended hydrocarbon [7]phenacene. App. Phys. Lett. 98, 013303 (2011)

    Article  Google Scholar 

  15. N. Kawasaki, Y. Kubozono, H. Okamoto, A. Fujiwara, M. Yamaji, Trap states and transport characteristics in picene thin film field-effect transistor. Appl. Phys. Lett. 94, 043310 (2009)

    Article  Google Scholar 

  16. X. Lee, Y. Sugawara, A. Ito, S. Oikawa, N. Kawasaki, Y. Kaji, R. Mitsuhashi, H. Okamoto, A. Fujiwara, K. Omote, T. Kambe, N. Ikeda, Y. Kubozono, Quantitative analysis of O2 gas sensing characteristics of picene thin film field-effect transistors. Org. Electron. 11, 1394–1398 (2010)

    Article  CAS  Google Scholar 

  17. R. Mitsuhashi, Y. Suzuki, Y. Yamanari, H. Mitamura, T. Kambe, N. Ikeda, H. Okamoto, A. Fujiwara, M. Yamaji, N. Kawasaki, Y. Maniwa, Y. Kubozono, Superconductivity in alkali-metal-doped picene. Nature 464, 76–79 (2010)

    Article  CAS  Google Scholar 

  18. X.F. Wang, R.H. Liu, Z. Gui, Y.L. Xie, Y.J. Yan, J.J. Ying, X.G. Luo, and X.H. Chen, Superconductivity at 5 K in potassium doped phenanthrene. Condens. Matter. 1–20 (2010). arXiv:1102.4075v1

  19. X.F. Wang, R.H. Liu, Z. Gui, Y.L. Xie, Y.J. Yan, J.J. Ying, X.G. Luo, X.H. Chen, Superconductivity at 5 K in alkali-metal-doped phenanthrene. Nat. Commun. 2, 507 (2011)

    Article  CAS  Google Scholar 

  20. Y. Kubozono, H. Mitamura, X. Lee, X. He, Y. Yamanari, Y. Takahashi, Y. Suzuki, Y. Kaji, R. Eguchi, K. Akaike, T. Kambe, H. Okamoto, A. Fujiwara, T. Kato, T. Kosugi, H. Aoki, Metal-intercalated aromatic hydrocarbons: a new class of carbon-based superconductors. Phys. Chem. Chem. Phys. 13, 16476–16493 (2011)

    Article  CAS  Google Scholar 

  21. K.F. Lang, Pure products from coal tar. Angew. Chem. 63, 345–349 (1951)

    Google Scholar 

  22. R.G. Harvey, J. Pataki, C. Cortez, P.D. Raddo, C.X. Yang, A new general synthesis of polycyclic aromatic compounds based on enamine chemistry. J. Org. Chem. 56, 1210–1217 (1991)

    Article  CAS  Google Scholar 

  23. F.B. Mallory, C.W. Mallory, Photocyclization of stilbenes and related molecules. Org. React. 30, 1–456 (1984)

    CAS  Google Scholar 

  24. H. Okamoto, M. Yamaji, S. Gohda, Y. Kubozono, N. Komura, K. Sato, H. Sugino, K. Satake, Facile synthesis of picene from 1, 2-di(1-naphthyl)ethane by 9-fluorenone-sensitized photolysis. Org. Lett. 13, 2758–2761 (2011)

    Article  CAS  Google Scholar 

  25. M. Yamaji, Y. Aihara, T. Itoh, S. Tobita, H. Shizuka, Thermochemical profiles on hydrogen atom transfer from triplet naphthol and proton-induced electron transfer from triplet methoxynaphthalene to benzophenone via triplet exciplexes studied by laser flash photolysis. J. Phys. Chem. 98, 7014–7021 (1994)

    Article  CAS  Google Scholar 

  26. H. Okamoto, Y. Kubozono, M. Yamaji, S. Gohda, Preparation of high-purity picenes and their crystals formed by sublimation, Jpn. Kokai Tokkyo Koho, JP 2010143895 (2010). Chem. Abstr. 153, 115918 (2010)

    Google Scholar 

  27. S.L. Murov, I. Carmichael, G.L. Hug, Handbook of Photochemistry, 2nd edn. (Marcel Dekker, New York, 1993)

    Google Scholar 

  28. K.B. Wiberg, Properties of some condensed aromatic systems. J. Org. Chem. 62, 5720–5727 (1997)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support through Grants-in-Aid for Scientific Research (KAKENHI) from JSPS (no. 23350059 to M.Y.), the Adaptable and Seamless Technology Transfer Program (A-STEP), FS Stage, Exploratory Study from JST (AS231Z01256D to H.O.) and the“Element Innovation” Project by the Ministry of Education, Culture, Sports, Science, and Technology, Japan (to M.Y.) are gratefully acknowledged. The authors thank the SC-NMR Laboratory of Okayama University for the NMR spectral measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hideki Okamoto or Minoru Yamaji.

Additional information

This article is dedicated to Professor Kazuhiko Mizuno in memory of his retirement.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okamoto, H., Yamaji, M., Gohda, S. et al. Photochemical synthesis and electronic spectra of fulminene ([6]phenacene). Res Chem Intermed 39, 147–159 (2013). https://doi.org/10.1007/s11164-012-0639-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-012-0639-1

Keywords

Navigation