Skip to main content
Log in

Azide/oxygen photocatalysis with homogeneous and heterogeneous photocatalysts for 1,2-aminohydroxylation of acyclic/cyclic alkenes and Michael acceptors

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Homogeneous as well as heterogeneous photocatalysts that are able to oxidize the azide anion with low competitive singlet oxygen quantum yields are used to generate azidyl radicals. These radicals add to electron-rich as well as electron-poor (Michael acceptors) alkenes, and carbon radicals are formed regioselectively. Trapping with triplet oxygen (type I photooxygenation) is diffusion controlled, and the initially formed peroxy radicals are reduced with regeneration of the photocatalyst. Fluorescence quenching studies reveal rapid photoinduced electron transfer in the first catalysis step. The lack of rearrangement products in the bicyclic terpene series (pinenes, limonene) accounts for rapid subsequent oxygen trapping and back electron transfer steps. The 1,2-azidohydroperoxidation enables synthesis of 1,2-azidoalcohols and 1,2-aminoalcohols by different reduction protocols. Substrate modification and combination of type II photooxygenation with electron transfer photocatalysis allows the synthesis of 1-amino-2,3-diols and 2-amino-1,3-diols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Fig. 1
Scheme 5
Scheme 6

Similar content being viewed by others

References

  1. R. Noyori, M. Aoki, K. Sato, Green oxidation with aqueous hydrogen peroxide. Chem. Commun. 16, 1977–1986 (2003)

    Article  Google Scholar 

  2. B.M. Trost, On inventing reactions for atom economy. Acc. Chem. Res. 35, 695–705 (2002)

    Article  CAS  Google Scholar 

  3. A.G. Griesbeck, M. Cho, 9-Mesityl-10-acridinium: an efficient type II and electron-transfer photooxygenation catalyst. Org. Lett. 9, 611–613 (2007)

    Article  CAS  Google Scholar 

  4. A. Reinheimer, R. van Eldik, H. Kisch, On the mechanism of radical C–N coupling in type B semiconductor photocatalysis: a high-pressure study. J. Phys. Chem. 104, 1014–1024 (2000)

    Article  CAS  Google Scholar 

  5. A.G. Griesbeck, T. Hundertmark, J. Steinwascher, Regio- and diastereoselective formation of 1,2-azidohydro-peroxides by photooxygenation of alkenes in the presence of azide anions. Tetrahedron Lett. 37, 8367–8370 (1996)

    Article  CAS  Google Scholar 

  6. A.G. Griesbeck, J. Lex, K.M. Saygin, J. Steinwascher, Azidohydroperoxidation of pinenes: stereoselectivity pattern and the first X-ray structure of a 2-azidohydroperoxide. Chem. Commun. 22, 2205–2206 (2000)

    Article  Google Scholar 

  7. A.G. Griesbeck, M. Reckenthäler, J. Uhlig, Photoinduced azidohydroperoxidation of myrtenyl hydroperoxide with semiconductor nanoparticles and lucigenin as PET-catalysts. Photochem. Photobiol. Sci. 9, 775–778 (2010)

    Article  CAS  Google Scholar 

  8. E. Gandin, Y. Lion, A. Van de Vorst, Quantum yield of singlet oxygen production by xanthene derivatives. Photochem. Photobiol. 37, 271–278 (1983)

    Article  CAS  Google Scholar 

  9. K.A. Abdullah, T.J. Kemp, Electron donor and acceptor quenching of the fluorescence of 9,10-dicyanoanthracene in polar and non-polar solvents. J. Photochem. 28, 61–69 (1985)

    Article  CAS  Google Scholar 

  10. D.J. Guerin, T.E. Horstmann, S.J. Miller, Amine-catalyzed addition of azide ion to α,β-unsaturated carbonyl compounds. Org. Lett. 1, 1107–1109 (1999). TMS-azide reference

    Article  CAS  Google Scholar 

  11. M.S. Workentin, B.D. Wagner, J. Lusztyk, D.D.M. Wagner, Azidyl radical reactivity—N6 as a kinetic probe for the addition-reactions of azidyl radicals with olefins. J. Am. Chem. Soc. 117, 119–126 (1995)

    Article  CAS  Google Scholar 

  12. X.-F. Zhang, I. Zhang, L. Liu, Photophysics of halogenated fluoresceins: involvement of both intramolecular electron transfer and heavy atom effect in the deactivation of the excited states. Photochem. Photobiol. 86, 492–498 (2010)

    Article  CAS  Google Scholar 

  13. C.R. Lambert, I.E. Kochevar, Electron transfer quenching of the rose Bengal triplet state. Photochem. Photobiol. 66, 15–25 (1997)

    Article  CAS  Google Scholar 

  14. A.G. Griesbeck, L.-O. Höinck, J.M. Neudörfl, Neudörfl, Synthesis of spiroannulated and 3-arylated 1,2,4-trioxanes from mesitylol and 4-hydroxy methyltiglate by photooxygenation and peroxyacetalization. Beilstein J. Org. Chem. (2010). doi:10.3762/bjoc.6.61

    Google Scholar 

  15. A.G. Griesbeck, A. Bartoschek, J. Neudörfl, C. Miara, Stereoselectivity in ene-reactions with 1O2: matrix effects in polymer supports, photooxygenation of organic Salts and asymmetric synthesis. Photochem. Photobiol. 82, 1233–1240 (2006)

    Article  CAS  Google Scholar 

  16. K.A. Abdullah, T.J. Kemp, Electron-donor and acceptor quenching of the fluorescence of 9,10-dicyanoanthracence in polar and non-polar solvents. J. Photochem. 28, 61–69 (1985)

    Article  CAS  Google Scholar 

  17. D.W. Phillion, D.J. Kuizenga, A.E. Siegmann, Sub nanosecond relaxation time measurements using a transient induced grating method. Appl. Phys. Lett. 27, 85–87 (1975)

    Article  CAS  Google Scholar 

  18. B.A. Pryor, P.M. Palmer, P.M. Andrews, M.B. Berger, M.R. Topp, Spectroscopy of jet-cooled water complexes with coumarin 151: observation of vibronically induced conformational barrier crossing. J. Phys. Chem. 102, 3284–3292 (1998)

    Article  CAS  Google Scholar 

  19. B. Maillard, K.U. Ingold, J.C. Scaiano, Rate constants for the reactions of free radicals with oxygen in solution. J. Am. Chem. Soc. 105, 5095–5099 (1983)

    Article  CAS  Google Scholar 

  20. S. Bräse, C. Gil, K. Knepper, V. Zimmermann, Organic azides: an exploding diversity of a unique class of compounds. Angew. Chem. Int. Ed. 44, 5188–5240 (2005)

    Article  Google Scholar 

  21. W.H. Binder, C. Kluger, Azide/alkyne- “click” reactions: applications in material science and organic synthesis. Curr. Org. Chem. 10, 1791–1815 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge financial support by the Deutsche Forschungsgemeinschaft (DFG) and the Volkswagen-Stiftung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel G. Griesbeck.

Additional information

Dedicated to Professor Kazuhiko Mizuno on the occasion of his retirement from Osaka Prefecture University.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Griesbeck, A.G., Steinwascher, J., Reckenthäler, M. et al. Azide/oxygen photocatalysis with homogeneous and heterogeneous photocatalysts for 1,2-aminohydroxylation of acyclic/cyclic alkenes and Michael acceptors. Res Chem Intermed 39, 33–42 (2013). https://doi.org/10.1007/s11164-012-0629-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-012-0629-3

Keywords

Navigation