Skip to main content
Log in

Diels–Alder dimerization of Morita–Baylis–Hillman acetates catalyzed by organocatalysts

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

DABCO-catalyzed dimerization of Morita–Baylis–Hillman acetates to synthesize a series of 3-alkyl-4-(E)-alkenyl-cyclohex-1-ene-1,4-dicarbonyl compounds in excellent yields with modest to excellent diastereoselectivity is reported. A plausible reaction mechanism is also proposed on the basis of previous literature and preliminary investigation the asymmetric version of the reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5

Similar content being viewed by others

References

  1. S.E. Drewes, G.H.P. Roos, Synthetic potential of the tertiary-amine-catalysed reaction of activated vinyl carbanions with aldehydes. Tetrahedron 44, 4653–4670 (1988)

    Article  CAS  Google Scholar 

  2. D. Basavaiah, P.D. Rao, R.S. Hyma, The Baylis–Hillman reaction: a novel carbon–carbon bond forming reaction. Tetrahedron 52, 8001–8062 (1996)

    Article  CAS  Google Scholar 

  3. E. Ciganek, in In Organic Reactions, vol. 51, ed. by L.A. Paquette (Wiley, New York, 1997), pp. 201–350

    Google Scholar 

  4. P. Langer, New strategies for the development of an asymmetric version of the Baylis–Hillman reaction. Angew. Chem. Int. Ed. 39, 3049–3051 (2000)

    Article  CAS  Google Scholar 

  5. D. Basavaiah, A.J. Rao, T. Satyanarayana, Recent advances in the Baylis–Hillman reaction and applications. Chem. Rev. 103, 811–892 (2003)

    Article  CAS  Google Scholar 

  6. Y.-L. Shi, M. Shi, Aza-Baylis–Hillman reactions and their synthetic applications. Eur. J. Org. Chem. 18, 2905–2916 (2007)

    Article  Google Scholar 

  7. G. Masson, C. Housseman, J.-P. Zhu, The enantioselective Morita–Baylis–Hillman reaction and its aza counterpart. Angew. Chem. Int. Ed. 46, 4614–4628 (2007)

    Article  CAS  Google Scholar 

  8. D. Basavaiah, K.V. Rao, R.J. Reddy, The Baylis–Hillman reaction: a novel source of attraction, opportunities, and challenges in synthetic chemistry. Chem. Soc. Rev. 36, 1581–1588 (2007)

    Article  CAS  Google Scholar 

  9. C. Menozzi, P.I. Dalko, Organocatalytic enantioselective Morita–Baylis–Hillman reactions, in Reactions and experimental procedures, ed. by P.I. Dalko (Wiley–VCH, Weinheim, 2007)

    Google Scholar 

  10. V. Dederck, J. Mattinez, F. Lamaty, Aza-Baylis–Hillman reaction. Chem. Rev. 109, 1–48 (2009)

    Article  Google Scholar 

  11. G.-N. Ma, J.-J. Jiang, M. Shi, Y. Wei, Recent extensions of the Morita–Baylis–Hillman reaction. Chem. Commun. 45, 5496–5514 (2009)

    Article  Google Scholar 

  12. D. Basavaiah, B.S. Reddy, S.S. Badsara, Recent contributions from the Baylis–Hillman reaction to organic chemistry. Chem. Rev. 110, 5447–5674 (2010)

    Article  CAS  Google Scholar 

  13. S. Hatakeyama, β-Isocupreidine (β-ICD)-catalyzed asymmetric Baylis–Hillman reactions. J. Synth. Org. Chem Jpn. 64, 1132–1138 (2006)

    Article  CAS  Google Scholar 

  14. Y.J. Im, J.E. Na, J.N. Kim, One-pot synthesis of 5-arylpent-4-enoate derivatives from Baylis–Hillman acetates: use of phosphorous ylide. Bull. Korean Chem. Soc. 24, 511–513 (2003)

    Article  CAS  Google Scholar 

  15. K.Y. Lee, S. Gowrisankar, J.N. Kim, A practical and stereoselective synthesis of cinnamyl alcohols bearing α-cyano or α-ester functional group from Baylis–Hillman adducts. Bull. Korean Chem. Soc. 25, 413–414 (2004)

    Article  CAS  Google Scholar 

  16. Y.J. Im, C.G. Lee, H.R. Kimb, J.N. Kim, Synthesis of 4-arylidenecyclohexane-1,3-diones from the Baylis–Hillman acetates. Tetrahedron Lett. 44, 2987–2990 (2003)

    Article  CAS  Google Scholar 

  17. S. Gowrisankar, H.S. Lee, J.N. Kim, Radical cyclization of 4-aryl-1-iodobutene derivatives to form dihydronaphthalene scaffold. Tetrahedron Lett. 48, 3105–3108 (2007)

    Article  CAS  Google Scholar 

  18. H.S. Lee, S.J. Kim, J.N. Kim, Synthesis of 2-benzylidene-7a-alkyltetrahydropyrrolizine-3,5-diones starting from Baylis–Hillman adducts. Bull. Korean Chem. Soc. 27, 1063–1066 (2006)

    Article  CAS  Google Scholar 

  19. D.Y. Park, S. Gowrisankar, J.N. Kim, Synthesis of 3,3-disubstituted 2,3-dihydrobenzofuran derivatives from Baylis–Hillman adducts. Bull. Korean Chem. Soc. 26, 1440–1442 (2005)

    Article  CAS  Google Scholar 

  20. J.M. Kim, S.H. Kim, J.N. Kim, Synthesis of 2,4,5-trisubstituted pyrimidines from Baylis–Hillman adducts and amidines. Bull. Korean Chem. Soc. 28, 2505–2507 (2007)

    Article  CAS  Google Scholar 

  21. K. Jiang, J. Peng, H.-L. Cui, Y.-C. Chen, Organocatalytic asymmetric allylic alkylation of oxindoles with Morita–Baylis–Hillman carbonates. Chem. Commun. 45, 3955–3957 (2009)

    Article  Google Scholar 

  22. H.-L. Cui, J. Peng, X. Feng, W. Du, K. Jiang, Y.-C. Chen, Dual organocatalysis: asymmetric allylic–allylic alkylation of α, α-dicyanoalkenes and Morita–Baylis–Hillman carbonates. Chem. Eur. J. 15, 1574–1577 (2009)

    Article  CAS  Google Scholar 

  23. H.-L. Cui, J.-R. Huang, J. Lei, Z.-F. Wang, S. Chen, L. Wu, Y.-C. Chen, Direct asymmetric allylic alkylation of butenolides with Morita–Baylis–Hillman carbonates. Org. Lett. 12, 720–723 (2010)

    Article  CAS  Google Scholar 

  24. J. Peng, X. Huang, H.-L. Cui, Y.-C. Chen, Organocatalytic and electrophilic approach to oxindoles with C3-quaternary stereocenters. Org. Lett. 12, 4260–4263 (2010)

    Article  CAS  Google Scholar 

  25. S.-J. Zhang, H.-L. Cui, K. Jiang, R. Li, Z.-Y. Ding, Y.-C. Chen, Enantioselective allylic amination of Morita–Baylis–Hillman carbonates catalysed by modified cinchona alkaloids. Eur. J. Org. Chem. 2009, 5804–5809 (2009)

    Article  Google Scholar 

  26. H.-L. Cui, X. Feng, J. Peng, J. Lei, K. Jiang, Y.-C. Chen, Chemoselective asymmetric N-allylic alkylation of indoles with Morita–Baylis–Hillman carbonates. Angew. Chem. Int. Ed. 48, 5737–5740 (2009)

    Article  CAS  Google Scholar 

  27. Z.-K. Hu, H.-L. Cui, K. Jiang, Y.-C. Chen, Enantioselective O-allylic alkylation of Morita–Baylis–Hillman carbonates with oxime. Sci. Chin. Ser. B-Chem. 52, 1309–1313 (2009)

    Article  CAS  Google Scholar 

  28. X. Feng, Y.-Q. Yuan, H.-L. Cui, K. Jiang, Y.-C. Chen, Organocatalytic peroxy-asymmetric allylic alkylation. Org. Biomol. Chem. 7, 3660–3662 (2009)

    Article  CAS  Google Scholar 

  29. L. Hong, W.-S. Sun, C.-X. Liu, D.-P. Zhao, R. Wang, Enantioselective construction of allylic phosphine oxides through substitution of Morita–Baylis–Hillman carbonates with phosphine oxides. Chem. Commun. 46, 2856–2858 (2010)

    Article  CAS  Google Scholar 

  30. W.-S. Sun, L. Hong, C.-X. Liu, R. Wang, Base-accelerated enantioselective substitution of Morita–Baylis–Hillman carbonates with dialkyl phosphine oxides. Org. Lett. 12, 3914–3917 (2010)

    Article  CAS  Google Scholar 

  31. C.-W. Cho, J.-R. Kong, M.J. Krische, Phosphine-catalyzed regiospecific allylic amination and dynamic kinetic resolution of Morita–Baylis–Hillman acetates. Org. Lett. 6, 1337–1339 (2004)

    Article  CAS  Google Scholar 

  32. Y.-Q. Jiang, Y.-L. Shi, M. Shi, Chiral phosphine-catalyzed enantioselective construction of γ-butenolides through substitution of Morita–Baylis–Hillman acetates with 2-trimethylsilyloxy furan. J. Am. Chem. Soc. 130, 7202–7203 (2008)

    Article  CAS  Google Scholar 

  33. G.-N. Ma, S.-H. Cao, M. Shi, Chiral phosphine-catalyzed regio- and enantioselective allylic amination of Morita–Baylis–Hillman acetates. Tetrahedron Asymmetry 20, 1086–1092 (2009)

    Article  CAS  Google Scholar 

  34. H.-P. Deng, Y. Wei, M. Shi, Chiral bifunctional thiourea–phosphane organocatalysts in asymmetric allylic amination of Morita–Baylis–Hillman acetates. Eur. J. Org. Chem. 2011, 1956–1962 (2011)

    Article  Google Scholar 

  35. Y.-L. Yang, C.-K. Pei, M. Shi, Multifunctional chiral phosphines-catalyzed highly diastereoselective and enantioselective substitution of Morita–Baylis–Hillman adducts with oxazolones. Org. Biomol. Chem. 9, 3349–3358 (2011)

    Article  CAS  Google Scholar 

  36. Y.-S. Du, X.-Y. Lu, C.-M. Zhang, A catalytic carbon-phosphorus ylide reaction: phosphane-catalyzed annulation of allylic compounds with electron-deficient alkenes. Angew. Chem. Int. Ed. 42, 1035–1037 (2003)

    Article  CAS  Google Scholar 

  37. Y.-S. Du, J.-Q. Feng, X.-Y. Lu, A phosphine-catalyzed [3 + 6] annulation reaction of modified allylic compounds and tropone. Org. Lett. 7, 1987–1989 (2005)

    Article  CAS  Google Scholar 

  38. J.-Q. Feng, X.-Y. Lu, A.-D. Kong, X.-L. Han, A highly regio- and stereo-selective [3 + 2] annulation of allylic compounds and 2-substituted 1,1-dicyanoalkenes through a catalytic carbon–phosphorus ylide reaction. Tetrahedron 63, 6035–6041 (2007)

    Article  CAS  Google Scholar 

  39. S.-Q. Zheng, X.-Y. Lu, A phosphine-catalyzed [3 + 2] annulation reaction of modified allylic compounds and N-tosylimines. Org. Lett. 10, 4481–4484 (2008)

    Article  CAS  Google Scholar 

  40. S.-Q. Zheng, X.-Y. Lu, Phosphine-catalyzed [3 + 3] annulation reaction of modified tert-butyl allylic carbonates and substituted alkylidenemalononitriles. Tetrahedron Lett. 50, 4532–4535 (2009)

    Article  CAS  Google Scholar 

  41. S.-Q. Zheng, X.-Y. Lu, Phosphine-catalyzed [4 + 3] annulation for the synthesis of highly functionalized bicyclo [3.2.2] nonadienes. Org. Lett. 11, 3978–3981 (2009)

    Article  CAS  Google Scholar 

  42. L.-W. Ye, X.-L. Sun, Q.-G. Wang, Y. Tang, Phosphine-catalyzed intramolecular formal [3 + 2] cycloaddition for highly diastereoselective synthesis of bicyclo [n.3.0] compounds. Angew. Chem. Int. Ed. 46, 5951–5954 (2007)

    Article  CAS  Google Scholar 

  43. R. Zhou, J.-F. Wang, H.-B. Song, Z.-J. He, Phosphine-catalyzed cascade [3 + 2] cyclization-allylic alkylation, [2 + 2 + 1] annulation, and [3 + 2] cyclization reactions between allylic carbonates and enones. Org. Lett. 13, 580–583 (2011)

    Article  CAS  Google Scholar 

  44. Q.-G. Wang, S.-F. Zhu, L.-W. Ye, C.-Y. Zhou, X.-L. Sun, Y. Tang, Q.-L. Zhou, Catalytic asymmetric intramolecular cascade reaction for the construction of functionalized benzobicyclo [4.3.0] skeletons. Remote control of enantioselectivity. Adv. Synth. Catal. 352, 1914–1919 (2010)

    Article  CAS  Google Scholar 

  45. Z.-L. Chen, J.-L. Zhang, An unexpected phosphine-catalyzed regio- and diastereoselective [4 + 1] annulation reaction of modified allylic compounds with activated enones. Chem. Asian J. 5, 1542–1545 (2010)

    Article  CAS  Google Scholar 

  46. P.-Z. Xie, Y. Huang, R.-Y. Chen, Phosphine-catalyzed domino reaction: highly stereoselective synthesis of trans-2,3-dihydrobenzofurans from salicyl N-thiophosphinyl imines and allylic carbonates. Org. Lett. 12, 3768–3771 (2010)

    Article  CAS  Google Scholar 

  47. J.-J. Tian, R. Zhou, H.-Y. Sun, H.-B. Song, Z.-J. He, Phosphine-catalyzed [4 + 1] annulation between α, β-unsaturated imines and allylic carbonates: synthesis of 2-pyrrolines. J. Org. Chem. 76, 2374–2378 (2011)

    Article  CAS  Google Scholar 

  48. H.M.R. Hoffmann, U. Egger, W. Poly, Stereoselective synthesis of (E)-3-methylene-4-alken-2-ones from aldehydes and methyl vinyl ketone and their spontaneous dimerization. Angew. Chem. Int. Ed. 26, 1015–1017 (1987)

    Article  Google Scholar 

  49. W. Poly, D. Schomburg, H.M.R. Hoffmann, Stereoselective generation and facile dimerization. J. Org. Chem. 53, 3701–3710 (1988)

    Article  CAS  Google Scholar 

  50. H.M.R. Hoffmann, A. Welchert, A.M.Z. Slawin, D.J. Williams, Dimerization of (E)-2-benzenesulfonyl-1, 3-alkadienes. The benzenesulfonyl group exerts acyclic stereocontrol. Tetrahedron 46, 5591–5602 (1990)

    Article  CAS  Google Scholar 

  51. J.N. Kim, H.J. Lee, K.Y. Lee, J.H. Gong, Regioselective allylic amination of the Baylis–Hillman adducts: an easy and practical access to the Baylis–Hillman adducts of N-tosylimines. Synlett 2002, 173–175 (2002)

    Article  Google Scholar 

  52. Y. Wei, M. Shi, Multifunctional chiral phosphine organocatalysts in catalytic asymmetric Morita–Baylis–Hillman and related reactions. Acc. Chem. Res. 43, 1005–1018 (2010)

    Article  CAS  Google Scholar 

  53. C.A. Stewart, Diene structure and Diels–Alder reactivity. J. Org. Chem. 28, 3320–33323 (1963)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Shanghai Municipal Committee of Science and Technology (08dj1400100-2), National Basic Research Program of China (973)-2010CB833302, the Fundamental Research Funds for the Central Universities and the National Natural Science Foundation of China for financial support (21072206, 20472096, 20872162, 20672127, 20821002 and 20732008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Shi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2908 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deng, HP., Wei, Y. & Shi, M. Diels–Alder dimerization of Morita–Baylis–Hillman acetates catalyzed by organocatalysts. Res Chem Intermed 39, 5–18 (2013). https://doi.org/10.1007/s11164-012-0626-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-012-0626-6

Keywords

Navigation