Skip to main content
Log in

Photocatalytic performance of combustion-synthesized β and γ-Ga2O3 in the degradation of 1,4-dioxane in aqueous solution

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Nanostructures of β and γ-Ga2O3 were prepared by the solution combustion route using urea as fuel. The synthesized nano photocatalysts were characterized by use of XRD, FT-IR, BET, TEM, TGA–DTA, DRS, and Raman spectroscopy. XRD and TEM investigations confirmed the nanostructures; particle size was in the range 3–5 nm for γ-Ga2O3 and 40–50 nm for β-Ga2O3. The specific surface area of γ-Ga2O3 was 91 mg−1 and that of β-Ga2O3 was 24.3 mg−1. The polymorphs of gallium oxide were used as photocatalysts for decomposition of 1,000 mg/l 1,4-dioxane. More than 90 % of the 1,4-dioxane could be degraded in less than 180 min by use of 10 mg/l photocatalyst + 0.5 ml H2O2. The efficiency of photocatalytic degradation of 1,4-dioxane by the synthesized photocatalysts was compared with that of P-25 TiO2 and followed the order γ-Ga2O≥ β-Ga2O> P-25 TiO2. The degradation was found to follow pseudo first-order kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H.M. Coleman, V. Vimonses, G. Leslie, R. Amal, J. Hazard. Mater. 146, 496 (2007)

    Article  CAS  Google Scholar 

  2. V. Maurino, P. Calza, C. Minero, E. Pelizzetti, M. Vincenti, Chemosphere 35(11), 2675 (1997)

    Article  CAS  Google Scholar 

  3. R.W. Matthews, Photocatalytic Purification and Treatment of Water and Air (Elsevier Science Publishers, Amsterdam, 1993), pp. 121–139

    Google Scholar 

  4. A. Mills, S.L. Hunte, J. Photochem. Photobiol. A 108, 1 (1997)

    Article  CAS  Google Scholar 

  5. S. Malato, P. Fernandez-Ibanez, M.I. Maldonado, J. Blanco, W. Gernjak, Catal. Today 147, 1 (2009)

    Article  CAS  Google Scholar 

  6. N. Serpone, A.V. Emeline, Int. J. Photoenergy 4, 91 (2002)

    Article  CAS  Google Scholar 

  7. D.M. Blake, in Bibliography of Work on the Heterogeneous Photocatalytic Removal of Hazardous Compounds from Water and Air (National Renewable Energy Laboratory, Golden, 1999), NREL/TP-570-26797, pp. 1–160

  8. H. Gerischer, in Photocatalytic Purification and Treatment of Water and Air, ed. by D.F. Ollis, H. Al-Ekabi (Elsevier, New York, 1993), p. 1

    Google Scholar 

  9. N. Venkatachalam, M. Palanichamy, V. Murugesan, J. Mol. Catal. A 273, 177 (2007)

    Article  CAS  Google Scholar 

  10. Y. Hou, J. Zhang, Z. Ding, L. Wu, Powder Technol. 203(3), 440 (2010)

    Article  CAS  Google Scholar 

  11. H. Tippins, Phys. Rev. 140, 316 (1965)

    Article  CAS  Google Scholar 

  12. G. Blasse, A. Bril, J. Phys. Chem. Solids 31(4), 707 (1970)

    Article  CAS  Google Scholar 

  13. Y. Hou, X. Wang, L. Wu, Z. Ding, X. Fu, Environ. Sci. Technol. 40, 5799 (2006)

    Article  CAS  Google Scholar 

  14. Y. Hou, L. Wu, X. Wang, Z. Ding, Z. Li, X. Fu, J. Catal. 250, 12 (2007)

    Article  CAS  Google Scholar 

  15. K.M. Al-Khamis, R.M. Mahfouz, A.A. Al-Warthan, M.R.H. Siddiqui, Arab. J. Chem. 2, 73 (2009)

    Article  CAS  Google Scholar 

  16. U. Rambabu, N.R. Munirathnam, T.L. Prakash, B. Vengalrao, S. Buddhudu, J. Mater. Sci. 42, 9262 (2007)

    Article  CAS  Google Scholar 

  17. M. Ristic, S. Popovic, S. Music, Mater. Lett. 59, 1227 (2005)

    Article  CAS  Google Scholar 

  18. L.C. Tien, W.T. Chen, C.H. Ho, J. Am. Ceram. Soc. 94(9), 3117 (2011)

    Article  CAS  Google Scholar 

  19. V. Srihari, V. Sridharan, H.K. Sahu, G. Raghavan, V.S. Sastry, C.S. Sundar, J. Mater. Sci. 44, 671 (2009)

    Article  CAS  Google Scholar 

  20. K. Patil, S. Aruna, S. Ekambaram, Curr. Opin. Solid State Mater. Sci. 2, 158–165 (1997)

    Article  CAS  Google Scholar 

  21. S.R. Jain, K.C. Adiga, V.R. Pai Verneker, Combust. Flame 40, 71 (1981)

    Article  CAS  Google Scholar 

  22. P.H. Howard, Solvents, in Handbook of Environmental Fate and Exposure Data for Organic Chemicals, ed. by P.H. Howard (Lewis Publishers, Chelsea, 1990), pp. 216–221

    Google Scholar 

  23. R. Roy, V.G. Hill, E.F. Osborn, J. Am. Chem. Soc. 74, 719 (1952)

    Article  CAS  Google Scholar 

  24. M.R. Delgado, C.O. Arean, Mater. Lett. 57, 2292 (2003)

    Article  Google Scholar 

  25. S. Geller, J. Chem. Phys. 33, 676 (1960)

    Article  CAS  Google Scholar 

  26. C.O. Arean, A.L. Bellan, M.P. Mentruit, M.R. Delgado, G.T. Palomino, Microporous Mesoporous Mater. 40, 35 (2000)

    Article  Google Scholar 

  27. V.S. Escribano, J.M.G. Amores, E.F. Lopez, M. Panizza, C. Resini, G. Busca, J. Mater. Sci. 40, 2013 (2005)

    Article  CAS  Google Scholar 

  28. Y. Xu, M.A.A. Schoonen, Am. Mineral. 85, 543 (2000)

    CAS  Google Scholar 

  29. M.A. Barakat, J.M. Tseng, C.P. Huang, Appl. Catal. B 59, 99 (2005)

    Article  CAS  Google Scholar 

  30. M. Mehrvar, W.A. Anderson, M. Moo-Young, Int. J. Photoenergy 2, 67 (2000)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Dr P. Sasidhar and Shri V. Balasubramaniyan of SRI, AERB, Kalpakkam, for their support for carrying out the work. The authors are also thankful to Dr V. Sridharan, MSD, IGCAR for his encouragement and guidance during this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Seshadri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seshadri, H., Cheralathan, M. & Sinha, P.K. Photocatalytic performance of combustion-synthesized β and γ-Ga2O3 in the degradation of 1,4-dioxane in aqueous solution. Res Chem Intermed 39, 991–1001 (2013). https://doi.org/10.1007/s11164-012-0610-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-012-0610-1

Keywords

Navigation