Skip to main content
Log in

Theoretical study of the thermal rearrangement of chloromethylsilanes, and its mechanism

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The thermal rearrangement reactions of chloromethylsilane, (chloromethyl)dimethylsilane, and (chloromethyl)vinylsilane have been studied by use of the density functional theory method at the B3LYP/6-311G(d, p) level. The structures of the reactants, transition states, and the products were determined and fully optimized. The geometries of the different stationary points and the harmonic vibrational frequencies were calculated at the same level. The results showed that thermal rearrangement of the chloromethylsilanes occurred via one pathway. The chlorine atom migrated from the carbon atom to the silicon atom, and the hydrogen atom migrated simultaneously from the silicon atom to the carbon atom through a double-three-membered-ring transition state, forming methylchlorosilane, trimethylchlorosilane, and vinylmethylchlorosilane. The energy barriers of the three rearrangements calculated at the B3LYP/6-311G(d, p) level were 217.4, 201.6, and 208.7 kJ mol−1, respectively. The effects of alkyl substituents on silicon atom are discussed. Changes of thermodynamic functions, equilibrium constant, and reaction rate constant were calculated in accordance with Eyring transition-state theory over the temperature range 400–1,500 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1

Similar content being viewed by others

References

  1. B.K. Yoo, N. Jung, Adv. Organomet. Chem. 50, 145–177 (2004)

    Article  CAS  Google Scholar 

  2. D. Stefanakis, D.F. Ghanotakis, J. Nanopart. Res. 12, 1285–1297 (2010)

    Article  CAS  Google Scholar 

  3. Y. Cai, B.M. Zhang, Appl. Phys. A 100, 1221–1229 (2010)

    Article  CAS  Google Scholar 

  4. M. Mohammadi, M. Ghorbani, A. Azizi, J. Coat. Technol. Res. 7, 697–702 (2010)

    Article  CAS  Google Scholar 

  5. C. Buchgraber, J. Spanring, A. Pogantsch, M. Turner, Synth. Met. 147, 91–95 (2004)

    Article  CAS  Google Scholar 

  6. A.M. Almanza-Workman, S. Raghavan, S. Petrovic, B. Gogoi, P. Deymier, D.J. Monk, R. Roop, Thin Solid Films 423, 77–87 (2003)

    Article  CAS  Google Scholar 

  7. M. Castellano, A. Gandini, P. Fabbri, M.N. Belgacem, J. Colloid Interface Sci. 273, 505–511 (2004)

    Article  CAS  Google Scholar 

  8. R. Corriu, G. Royo, Tetrahedron 27, 4289–4303 (1971)

    Article  CAS  Google Scholar 

  9. Y.P. Guo, H.J. Wang, Y.J. Guo, L.H. Guo, L.F. Chu, C.X. Guo, Chem. Eng. J. 166, 391–400 (2011)

    Article  CAS  Google Scholar 

  10. E. Scharrer, M. Brookhart, J. Organomet. Chem. 497, 61–71 (1995)

    Article  CAS  Google Scholar 

  11. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, . NakajimaT., Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Cliolord, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople. Gaussian Inc, Pittsburgh, 2003

Download references

Acknowledgments

The authors are grateful for financial support from National Natural Science Foundation of China (20874057).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengyu Feng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bei, Y., Liu, Q. & Feng, S. Theoretical study of the thermal rearrangement of chloromethylsilanes, and its mechanism. Res Chem Intermed 38, 2491–2500 (2012). https://doi.org/10.1007/s11164-012-0564-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-012-0564-3

Keywords

Navigation