Skip to main content
Log in

Kinetic model for formation of DMPO-OH in water under ultrasonic irradiation using EPR spin trapping method

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The rate of the formation of the 2-hydroxy-5,5-dimethyl-1-pyrrolidinyloxy (DMPO-OH) radical in water during ultrasonic irradiation was evaluated both experimentally and theoretically. The hydroxyl radical (OH radical) was indirectly detected using 5,5-dimethyl-1-pyrroline N-oxide (DMPO) as the spin trapping compound, and the generated DMPO-OH by the reaction between the OH radical and DMPO was measured by an electron paramagnetic resonance. The rate of change in the concentration of the DMPO-OH decreased with time, suggesting that not only the formation reaction of DMPO-OH but also the degradation reaction would take place by ultrasonic irradiation. The formation rate of the DMPO-OH was higher with ultrasonic power intensity and lower with reaction temperature. Based on the experimental results, a kinetic model for the formation of the DMPO-OH was proposed by considering the formation reaction, the ultrasonic degradation, and spontaneous degradation of DMPO-OH. The model well described the effect of the ultrasonic power intensity and the reaction temperature on the formation rate of DMPO-OH. The rate of the formation of the DMPO-OH was evaluated with the aid of the kinetic model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Y.G. Adewuyi, Ind. Eng. Chem. Res. 40, 4681 (2001)

    Article  CAS  Google Scholar 

  2. P. Kajitvichyanukul, M.C. Lu, C.H. Liao, W. Wirojanagud, T. Koottatep, J. Hazard. Mater. B135, 337 (2006)

    Article  Google Scholar 

  3. D.R. Stapleton, D. Mantzavinos, M. Papadaki, J. Hazard. Mater. 146, 640 (2007)

    Article  CAS  Google Scholar 

  4. M. Kubo, K. Matsuoka, A. Takahashi, N. Shibasaki-Kitakawa, T. Yonemoto, Ultrason. Sonochem. 12, 263 (2005)

    Article  CAS  Google Scholar 

  5. M. Kubo, H. Fukuda, X.J. Chua, T. Yonemoto, Ind. Eng. Chem. Res. 46, 699 (2007)

    Article  CAS  Google Scholar 

  6. M.A. Barakat, J.M. Tseng, C.P. Huang, Appl. Catal. B 59, 99 (2005)

    Article  CAS  Google Scholar 

  7. J.M. Joseph, H. Destaillats, H.M. Hung, M.R. Hoffmann, J. Phys. Chem. A 104, 301 (2000)

    Article  CAS  Google Scholar 

  8. N. Shimizu, C. Ogino, M.F. Dadjour, T. Murata, Ultrason. Sonochem. 14, 184 (2007)

    Article  CAS  Google Scholar 

  9. P.M. Kanthale, P.R. Gogate, A.B. Pandit, A.M. Wilhelm, Ultrason. Sonochem. 10, 331 (2003)

    Article  CAS  Google Scholar 

  10. K.Y. Kim, K.T. Byun, H.Y. Kwak, Chem. Eng. J. 132, 125 (2007)

    Article  CAS  Google Scholar 

  11. A. Henglein, Ultrasonics 25, 6 (1987)

    Article  CAS  Google Scholar 

  12. D. Kobayashi, K. Sano, Y. Takeuchi, K. Terasaka, Ultrason. Sonochem. 18, 1205 (2011)

    Article  CAS  Google Scholar 

  13. Y. Ohashi, H. Yoshioka, H. Yoshioka, Biosci. Biotechnol. Biochem. 66, 847 (2002)

    Article  CAS  Google Scholar 

  14. M.M. Castellanos, D. Reyman, C. Sieiro, P. Calle, Ultrason. Sonochem. 8, 17 (2001)

    Article  CAS  Google Scholar 

  15. K. Makino, M.M. Mossoba, P. Riesz, J. Am. Chem. Soc. 104, 3537 (1982)

    Article  CAS  Google Scholar 

  16. K. Makino, M.M. Mossoba, P. Riesz, J. Phys. Chem. 87, 1369 (1983)

    Article  CAS  Google Scholar 

  17. S.N. Nam, S.K. Han, J.W. Kang, H. Choi, Ultrason. Sonochem. 10, 139 (2003)

    Article  CAS  Google Scholar 

  18. H. Yanagida, Y. Masubuchi, K. Minagawa, T. Ogata, J.-I. Takimoto, K. Koyama, Ultrason. Sonochem. 5, 133 (1999)

    Article  CAS  Google Scholar 

  19. K. Nakamura, T. Kanno, H. Ikai, E. Sato, T. Mokudai, Y. Niwano, T. Ozawa, M. Kohno, Bull. Chem. Soc. Jpn. 83, 1037 (2010)

    Article  CAS  Google Scholar 

  20. C. Petrier, A. Francony, Ultrason. Sonochem. 4, 295 (1997)

    Article  CAS  Google Scholar 

  21. G. Tezcanli-Güyer, N.H. Ince, Ultrasonics 42, 603 (2004)

    Article  Google Scholar 

  22. S. Pou, C.L. Ramos, T. Gladwell, E. Renks, M. Centra, D. Young, M.S. Cohen, G.M. Rosen, Anal. Biochem. 217, 76 (1994)

    Article  CAS  Google Scholar 

  23. K.S. Suslick, J.J. Gawienowski, P.F. Schubert, H.H. Wang, Ultrasonics 22, 33 (1984)

    Article  CAS  Google Scholar 

  24. K.S. Suslick, M.M. Mdleleni, J.T. Ries, J. Am. Chem. Soc. 119, 9303 (1997)

    Article  CAS  Google Scholar 

  25. J.A. Nelder, R. Mead, Comput. J. 7, 308 (1964)

    Google Scholar 

Download references

Acknowledgment

This research was supported in part by Grant-in-Aid for Young Scientists (B) No. 20760619 from the Ministry of Education, Culture, Sports, Science and Technology (MEXT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaki Kubo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kubo, M., Sekiguchi, K., Shibasaki-Kitakawa, N. et al. Kinetic model for formation of DMPO-OH in water under ultrasonic irradiation using EPR spin trapping method. Res Chem Intermed 38, 2191–2204 (2012). https://doi.org/10.1007/s11164-012-0536-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-012-0536-7

Keywords

Navigation