Skip to main content
Log in

Effect of polystyrene-grafted multi-walled carbon nanotubes on the viscoelastic behavior and electrical properties of polypropylene-based nanocomposites

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

In this work, a free-radical grafting method was used to modify multi-walled carbon nanotubes (MWNT) to improve their dispersion in a polymer matrix by use of a compounding technique. By free-radical grafting for in-situ polymerization, MWNT agglomerates are turned into a networked micro-structure, which in turn builds up a strong interfacial interaction with the polymeric matrix during the mixing procedure. Polystyrene (PS)-MWNT with a hairy rod nanostructure were synthesized by in-situ free-radical polymerization of styrene monomer on the surface of MWNT. PS-MWNT/polypropylene (PP) nanocomposites were prepared by melt mixing. The effect of polystyrene-grafted multi-walled carbon nanotube (PS-MWNT) content on the rheological properties of the polypropylene (PP)-based nanocomposites was investigated. Surface characteristics of PS-MWNT were investigated by infrared spectroscopy, Raman spectroscopy (FT-Raman), thermogravimetric analysis, and transmission electron microscopy. The rheological properties of the PS-MWNT/PP composites were confirmed by rheometry. The complex viscosity of the PS-MWNT/polypropylene (PP) nanocomposites increased with increasing PS-MWNT content, primarily because of an increase in the storage modulus G′. In-situ-polymerized PS-MWNT were uniformly distributed in the PP matrix. In addition, the PS-MWNT were interconnected in the PP matrix and then formed PS-MWNT networks, resulting in the formation of a conducting network. Therefore, compared with samples with pristine MWNT, PS-MWNT-reinforced samples have lower conductivity as a resulting of PS grafting on the surface of MWNT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J.B. Baek, C.B. Lyons, L.S. Tan, Macromolecules 37, 8278 (2004)

    Article  Google Scholar 

  2. H.D. Bao, Z.X. Guo, J. Yu, Polymer 49, 3826 (2008)

    Article  CAS  Google Scholar 

  3. R.H. Baughman, A.A. Zakhidov, W.A. De Heer, Science 297, 787 (2002)

    Article  CAS  Google Scholar 

  4. D. Brown, H.R. Clarke, M. Okuda, T. Yamazaki, J. Chem. Phys. 100(2), 1684 (1994)

    Article  CAS  Google Scholar 

  5. W. Cho, Y.C. Kim, S.S. Kim, J. Ind. Eng. Chem. 16, 20 (2010)

    Article  CAS  Google Scholar 

  6. L.M. Cui, Y. Zhang, Y.X. Zhang, X.F. Zhang, W. Zhou, Eur. Polym. J. 43, 5097 (2007)

    Article  CAS  Google Scholar 

  7. A. De Falco, M.L. Fascio, M.E. Lamanna, M.A. Coruera, I. Mondragon, G.H. Rubiolo, N.B. D’Accorso, S. Goyanes, Phys. B 404, 2780 (2009)

    Article  Google Scholar 

  8. W. Ding, A. Eitan, F.T. Fisher, X. Chen, D.A. Dikin, R. Andrews, Nano Lett. 3, 1593 (2003)

    Article  CAS  Google Scholar 

  9. R. Dweiri, J. Sahari, J. Power Sources 171, 424 (2007)

    Article  CAS  Google Scholar 

  10. R. Dweiri, J. Sahari, Compos. Sci. Technol. 68, 1679 (2008)

    Article  CAS  Google Scholar 

  11. T.W. Ebbesen, H.J. Lezec, H. Hiura, J.W. Bennett, H.F. Ghaemi, T. Thio, Nature 382, 54 (1996)

    Article  CAS  Google Scholar 

  12. G. Farzi, S. Akbar, E. Beyou, P. Cassagnau, F. Melis, Polymer 50, 5901 (2009)

    Article  CAS  Google Scholar 

  13. K. Fu, W. Huang, Y. Lin, L.A. Riddle, D.L. Caroll, Y.P. Sun, Nano Lett. 1, 439 (2001)

    Article  CAS  Google Scholar 

  14. M. Ganß, B.K. Satapathy, M. Thunga, R. Weidisch, P. Pötschke, D. Jehnichen, Acta Mater. 56, 2247 (2008)

    Article  Google Scholar 

  15. A.J. Hsieh, P. Moy, F.L. Beyer, P. Madison, E. Napadensky, J. Ren, R. Krishnamoorti, Polym. Eng. Sci. 44, 825 (2004)

    Article  CAS  Google Scholar 

  16. Z. Jin, X. Sun, G. Xu, S.H. Goh, W. Ji, Chem. Phys. Lett. 318, 505 (2000)

    Article  CAS  Google Scholar 

  17. K.C. Jung, L.C. Yang, K.F. Hsiang, C.H. Li, C.T. Chi, Microelectron. Eng. 73–74, 570 (2004)

    Google Scholar 

  18. A.B. Kaiser, G. Düberg, S. Roth, Phys. Rev. B 57, 1418 (1998)

    Article  CAS  Google Scholar 

  19. K.S. Kim, S.J. Park, Carbon Lett. 11, 235 (2010)

    Article  Google Scholar 

  20. S.T. Kim, H.J. Choi, S.M. Hong, Colloid Polym. Sci. 285, 593 (2007)

    Article  CAS  Google Scholar 

  21. K.S. Kim, K.Y. Rhee, K.H. Lee, J.H. Byun, S.J. Park, J. Ind. Eng. Chem. 16, 572 (2010)

    Article  CAS  Google Scholar 

  22. S.H. Lee, M.W. Kim, S.H. Kim, J.R. Youn, Eur. Polym. J. 44, 1620 (2008)

    Article  CAS  Google Scholar 

  23. P.J. Lemstra, T. Kooistra, G. Challa, J. Polym. Sci. A-2 Polym. Phys. 10, 823 (1972)

    Article  CAS  Google Scholar 

  24. Y. Li, H. Shimizu, Macromolecules 41, 5339 (2008)

    Article  CAS  Google Scholar 

  25. V. Lordi, N. Yao, J. Mater. Res. 15, 2770 (2000)

    Article  CAS  Google Scholar 

  26. C. McClory, T. McNally, M. Baxendale, P. Pötschke, W. Blau, Eur. Polym. J. 46, 854 (2010)

    Article  CAS  Google Scholar 

  27. M. Moniruzzaman, K.I. Winey, Macromolecules 39, 5194 (2006)

    Article  CAS  Google Scholar 

  28. G. Mountrichas, S. Pispas, N. Tagmatarchis, Mater. Sci. Eng. B 152, 40 (2008)

    Article  CAS  Google Scholar 

  29. W.C. Oh, W.B. Ko, F.J. Zhang, Elastom. Compos. 45, 80 (2010)

    CAS  Google Scholar 

  30. T.S. Omonov, C. Harrats, P. Moldenaers, G. Groeninckx, Polymer 48, 5917 (2007)

    Article  CAS  Google Scholar 

  31. P. Pötschke, T.D. Fornes, D.R. Paul, Polymer 43, 3247 (2002)

    Article  Google Scholar 

  32. A.M. Shanmugharaj, J.H. Bae, K.Y. Lee, W.H. Noh, S.H. Lee, S.H. Ryu, Compos. Sci. Technol. 67, 1813 (2007)

    Article  CAS  Google Scholar 

  33. Y.S. Shim, S.J. Park, Carbon Lett. 11, 311 (2010)

    Article  Google Scholar 

  34. S.C. Tjong, G.D. Liang, S.P. Bao, Scripta Mater. 57, 461 (2007)

    Article  CAS  Google Scholar 

  35. C. Wei, Appl. Phys. Lett. 88, 09318 (2006)

    Google Scholar 

  36. C. Wei, D. Srivastava, K. Cho, Nano Lett. 2, 647 (2002)

    Article  CAS  Google Scholar 

  37. N. Xie, Q. Jiao, C. Zang, C. Wang, Y. Liu, Mater. Des. 31, 1676 (2010)

    Article  Google Scholar 

  38. D. Xu, Z. Wang, Polymer 49, 330 (2008)

    Article  CAS  Google Scholar 

  39. Y. Yang, X. Xie, J. Wu, Y.W. Mai, J. Polym. Sci. 44, 3869 (2006)

    CAS  Google Scholar 

  40. J.H. Yang, T. Xu, A. Lu, Q. Zhang, H. Tan, Q. Fu, Compos. Sci. Technol. 69, 147 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Fundamental R&D Program for Core Technology of Materials, funded by the Ministry of Knowledge Economy, and by the Korea Foundation for International Cooperation of Science and Technology in 2007 (no. K20704000090), Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soo-Jin Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shim, YS., Park, SJ. Effect of polystyrene-grafted multi-walled carbon nanotubes on the viscoelastic behavior and electrical properties of polypropylene-based nanocomposites. Res Chem Intermed 38, 2123–2135 (2012). https://doi.org/10.1007/s11164-012-0531-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-012-0531-z

Keywords

Navigation