Skip to main content
Log in

Experimental and theoretical study for corrosion inhibition of mild steel 1 M HCl solution by some new diaminopropanenitrile compounds

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The inhibition of the corrosion of mild steel 1 M HCl solution by some diamine compounds has been investigated in relation to the concentration of the inhibitor as well as the temperature using weight loss and electrochemical measurements. The effect of the temperature on the corrosion behavior with the addition of different concentrations of new diamine compounds (3-[2-(2-cyano-ethylamino)-methylamino]-propionitrile (P1); 3-[2-(2-cyano-ethylamino)-ethylamino]-propionitrile (P2), and 3-[6-(2-cyano-ethylamino)-hexylamino]-propionitrile (P3), respectively, was studied in the temperature range 40–80 °C. Polarization curves reveal that (P1, P2, and P3) are mixed type inhibitors. The inhibition efficiency of organic compounds is temperature independent, but increases with the inhibitor concentration. Adsorption of inhibitor on the carbon steel surface is found to obey the Langmuir adsorption isotherm. Some thermodynamic functions of dissolution and adsorption processes were also determined. On the other hand, and in order to determine the relationship between the molecular structure of these compounds and inhibition efficiency, quantum chemical parameters were calculated. The theoretically obtained results were found to be consistent with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S.A. Ali, M.T. Saeed, S.V. Rahman, Corros. Sci. 45, 253 (2003)

    Article  Google Scholar 

  2. K.C. Pillai, R. Narayan, Corros. Sci. 2, 3 (1983)

    Google Scholar 

  3. J.O.M. Bockris, J. McBreen, L. Nanis, J. Electrochem. Soc. 112, 1025 (1965)

    Article  CAS  Google Scholar 

  4. F. Bentiss, M. Traisnel, H. Vezin, H.F. Hildebrand, M. Lagrenée, Corros. Sci. 46, 2781 (2004)

    Article  CAS  Google Scholar 

  5. M. Lagrenée, B. Mernari, M. Bouanis, M. Traisnel, F. Bentiss, Corros. Sci. 44, 573 (2002)

    Article  Google Scholar 

  6. G. Trabanelli, Corrosion 47, 410 (1991)

    Article  CAS  Google Scholar 

  7. J.M. Sykes, Br. Corros. J. 25, 175 (1990)

    CAS  Google Scholar 

  8. G. Lewis, Corros. Sci. 22, 579 (1982)

    Article  CAS  Google Scholar 

  9. S. Rengamani, T. Vasudenvan, S. Vka Iyer, Indian J. Technol. 31, 519 (1993)

    CAS  Google Scholar 

  10. G. Schmitt, Br. Corros. J. 19, 165 (1984)

    CAS  Google Scholar 

  11. J.O.M. Bockris, B. Yang, J. Electrochem. Soc. 138, 2237 (1991)

    Article  CAS  Google Scholar 

  12. K. Chandrasekara Pillai, R. Narayan, Corros. Sci. 23, 151 (1983)

    Article  CAS  Google Scholar 

  13. F.B. Growcock, V.R. Lopp, Corros. Sci. 28, 397 (1988)

    Article  CAS  Google Scholar 

  14. M. Bartos, N. Hackerman, J. Electrochem. Soc. 139, 3428 (1992)

    Article  CAS  Google Scholar 

  15. F. Zucchi, G. Trabanelli, G. Brunoro, Corros. Sci. 33, 1135 (1992)

    Article  CAS  Google Scholar 

  16. B.M. Mistry, N.S. Patel, N.J. Patel, S. Jauhari, Res. Chem. Intermed. 37, 659 (2011)

    Article  CAS  Google Scholar 

  17. J. Cruz, T. Pandiyan, E. García-Ochoa, J. Electroanal. Chem. 583, 8 (2005)

    Article  CAS  Google Scholar 

  18. J. Cruz, R. Martínez, E. Genesca, E. García-Ochoa, J. Electroanal. Chem. 566, 111 (2004)

    Article  CAS  Google Scholar 

  19. C. Ogretir, G. Bereket, Quantum chemical studies of some pyridine derivatives as corrosion inhibitors. J. Mol. Struct. (Theochem.) 488, 223 (1999)

    Article  CAS  Google Scholar 

  20. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03, Revision C.02 (Gaussian Inc., Pittsburgh, 2003)

  21. S.G. Zhang, Z. Lei, M.Z. Xia, F.Y. Wang, QSAR study on N containing corrosion inhibitors: quantum chemical approach assisted by topological index. J. Mol. Struct. (Theochem.) 732, 175 (2005)

    Article  Google Scholar 

  22. M. Lashgari, M.R. Arshadi, G.A. Parsafar, A simple and fast method for comparison of corrosion inhibition powers between pairs of pyridine derivative molecules. Corrosion 61, 778 (2005)

    Article  CAS  Google Scholar 

  23. V.S. Sastri, J.R. Perumareddi, Corrosion 53, 671 (1996)

    Google Scholar 

  24. R.G. Pearson, Inorg. Chem. 27, 734 (1988)

    Article  CAS  Google Scholar 

  25. F. Touhami, A. Aouniti, Y. Abed, B. Hammouti, S. Kertit, A. Ramdani, K. Elkacemi, Corros. Sci. 42, 929 (2000)

    Article  CAS  Google Scholar 

  26. B.G. Ateya, B.M. Abo El-Khair, I.A. Abdel Hamid, Corros. Sci. 16, 163 (1976)

    Article  CAS  Google Scholar 

  27. T. Tsuru, S. Haruyama, B. Gijutsu, J. Jpn. Soc. Corros. Eng. 27, 573 (1978)

    CAS  Google Scholar 

  28. A.E. Fouda, H.A. Mostafa, H.M. Abu-Elnader, Monatshefte. für. Chem. 104, 501 (1989)

    Article  Google Scholar 

  29. F.M. Donahue, K. Nobe, J. Electrochem. Soc. 112, 886 (1965)

    Article  CAS  Google Scholar 

  30. E. Kamis, F. Belluci, R.M. Latanision, E.S.H. El-Ashry, Corrosion 47, 677 (1991)

    Article  Google Scholar 

  31. M. Metikoš-Huković, R. Babić, Z. Grubać, J. Appl. Electrochem. 26, 443 (1996)

    Article  Google Scholar 

  32. H.L. Wang, H.B. Fan, J.S. Zheng, Mater. Chem. Phys. 77, 655 (2002)

    Article  Google Scholar 

  33. F.M. Bayoumi, W.A. Ghanem, Mater. Lett. 59, 3806 (2005)

    Article  CAS  Google Scholar 

  34. F. Xu, J. Duan, S. Zhang, B. Hou, Mater. Lett. 62, 4072 (2008)

    Article  CAS  Google Scholar 

  35. M.P. Soriaga, Chem. Rev. 90, 771 (1990)

    Article  CAS  Google Scholar 

  36. L. Larabi, Y. Harek, O. Benali, S. Ghalem, Prog. Org. Coat. 54, 256 (2005)

    Article  CAS  Google Scholar 

  37. I. Lukovits, I. Bako, A. Shaban, E. Kalman, Electrochim. Acta 43, 131 (1998)

    Article  CAS  Google Scholar 

  38. O. Kikuchi, Systematic QSAR procedures with quantum chemical descriptors. Quant. Struct.-Act. Relatsh. 6, 179 (1987)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Patel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herrag, L., Bouklah, M., Patel, N.S. et al. Experimental and theoretical study for corrosion inhibition of mild steel 1 M HCl solution by some new diaminopropanenitrile compounds. Res Chem Intermed 38, 1669–1690 (2012). https://doi.org/10.1007/s11164-012-0493-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-012-0493-1

Keywords

Navigation