Skip to main content

Nitrogen-doped TiO2 nanopowders prepared by chemical vapor synthesis: band structure and photocatalytic activity under visible light

Abstract

During chemical vapor synthesis of TiO2 nanopowders, nitrogen atoms were doped into the crystal lattice of TiO2. The nitrogen atoms were predominantly incorporated substitutionally in the crystal lattice of TiO2 nanopowders up to the doping level of 1.25 mol% nitrogen, whereas they were in both interstitial and substitutional sites over about 1.43 mol% nitrogen. From the photocatalytic activity of nitrogen-doped TiO2 estimated by decomposition of methylene blue under visible light, it was found that the substitutional nitrogen anions appearing at the low level doping was beneficial to its photocatalytic activity, whereas the interstitial ones appearing at the high level doping over 1.25 mol% nitrogen were not. The improved photocatalytic activity due to the substitutionally doped nitrogen was attributed to band gap narrowing which was confirmed by the studies of XPS, near edge X-ray absorption fine structure, and UV–Vis absorption.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. S.W. Liu, J.G. Yu, M. Jaroniec, Chem. Mater. 23, 4085 (2011)

    CAS  Google Scholar 

  2. M.R. Hoffmann, S.T. Martin, W.Y. Choi, D.W. Bahnemann, Chem. Rev. 95, 69 (1995)

    Article  CAS  Google Scholar 

  3. W. Zhao, C.C. Chen, X.Z. Li, J.C. Zhao, H. Hidaka, N. Serpone, J. Phys. Chem. B 106, 5022 (2002)

    Article  CAS  Google Scholar 

  4. P.F. Ji, M. Takeuchi, T.M. Cuong, J.L. Zhang, M. Matsuoka, M. Anpo, Res. Chem. Intermed. 36, 327 (2010)

    Article  CAS  Google Scholar 

  5. S. Bingham, W.A. Daoud, J. Mater. Chem. 21, 2041 (2011)

    Article  CAS  Google Scholar 

  6. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 293, 269 (2001)

    Article  CAS  Google Scholar 

  7. A. Ghicov, J.M. Macak, H. Tsuchiya, J. Kunze, V. Haeublein, L. Frey, P. Schmuki, Nano Lett. 6, 1080 (2006)

    Article  CAS  Google Scholar 

  8. S. Livraghi, M.C. Paganini, E. Giamello, A. Selloni, C. Di Valentin, G. Pacchioni, J. Am. Chem. Soc. 128, 15666 (2006)

    Article  CAS  Google Scholar 

  9. M. Sathish, B. Viswanathan, R.P. Viswanath, C.S. Gopinath, Chem. Mater. 17, 6349 (2005)

    Article  CAS  Google Scholar 

  10. Y. Wang, C.X. Feng, M. Zhang, J.J. Yang, Z.J. Zhang, Appl. Catal. B Environ. 104, 268 (2011)

    Article  CAS  Google Scholar 

  11. D.Q. Zhao, X.W. Huang, B.L. Tian, S.M. Zhou, Y.C. Li, Z.L. Du, Appl. Phys. Lett. 98, 162107 (2011)

    Google Scholar 

  12. Y. Yang, H. Zhong, C.X. Tian, Res. Chem. Intermed. 37, 91 (2011)

    Article  Google Scholar 

  13. T. Morikawa, R. Asahi, T. Ohwaki, K. Aoki, Y. Taga, Jpn. J. Appl. Phys. 40, L561 (2001)

    Article  CAS  Google Scholar 

  14. C. Di Valentin, G. Pacchioni, A. Selloni, S. Livraghi, E. Giamello, J. Phys. Chem. B 109, 11414 (2005)

    Article  Google Scholar 

  15. H. Irie, Y. Watanabe, K. Hashimoto, J. Phys. Chem. B 107, 5483 (2003)

    Article  CAS  Google Scholar 

  16. R. Nakamura, T. Tanaka, Y. Nakato, J. Phys. Chem. B 108, 10617 (2004)

    Article  CAS  Google Scholar 

  17. T. Ihara, M. Miyoshi, Y. Iriyama, O. Matsumoto, S. Sugihara, Appl. Catal. B Environ. 42, 403 (2003)

    Article  CAS  Google Scholar 

  18. R. Rattanakam, S. Supothina, Res. Chem. Intermed. 35, 263 (2009)

    Article  CAS  Google Scholar 

  19. G. Liu, F. Li, Z.G. Chen, G.Q. Lu, H.M. Cheng, J. Solid State Chem. 179, 331 (2006)

    Article  CAS  Google Scholar 

  20. Y. Liu, X. Chen, J. Li, C. Burda, Chemosphere 61, 11 (2005)

    Article  CAS  Google Scholar 

  21. C. Belver, R. Bellod, A. Fuerte, M. Fernandez-Garcia, Appl. Catal. B Environ. 65, 301 (2006)

    Article  CAS  Google Scholar 

  22. S.W. Yang, L. Gao, J. Am. Ceram. Soc. 87, 1803 (2004)

    Article  CAS  Google Scholar 

  23. F. Peng, L.F. Cai, L. Huang, H. Yu, H.J. Wang, J. Phys. Chem. Solids 69, 1657 (2008)

    Article  CAS  Google Scholar 

  24. Y. Cong, J.L. Zhang, F. Chen, M. Anpo, J. Phys. Chem. C 111, 6976 (2007)

    Article  CAS  Google Scholar 

  25. D. Li, H. Haneda, S. Hishita, N. Ohashi, Mater. Sci. Eng. B Solid 117, 67 (2005)

    Article  Google Scholar 

  26. J.L. Gole, J.D. Stout, C. Burda, Y.B. Lou, X.B. Chen, J. Phys. Chem. B 108, 1230 (2004)

    Article  CAS  Google Scholar 

  27. H. Park, H. Jie, K.H. Chae, J.K. Park, M. Anpo, D.Y. Lee, Curr. Appl. Phys. 8, 778 (2008)

    Article  Google Scholar 

  28. B.D. Cullity, Elements of X-Ray Diffraction, 2nd edn. (Addison-Wesley, Reading, 1978), p. 294

    Google Scholar 

  29. X.B. Chen, C. Burda, J. Phys. Chem. B 108, 15446 (2004)

    Article  CAS  Google Scholar 

  30. N.C. Saha, H.G. Tompkins, J. Appl. Phys. 72, 3072 (1992)

    Article  CAS  Google Scholar 

  31. S.G. Sugai, H. Watanabe, T. Kioka, H. Miki, K. Kawasaki, Surf. Sci. 259, 109 (1991)

    Article  CAS  Google Scholar 

  32. J.A. Rodriguez, T. Jirsak, J. Dvorak, S. Sambasivan, D. Fischer, J. Phys. Chem. B 104, 319 (2000)

    Article  CAS  Google Scholar 

  33. J.G. Chen, Surf. Sci. Rep. 30, 1 (1997)

    Article  CAS  Google Scholar 

  34. V.S. Lusvardi, M.A. Barteau, J.G. Chen, J. Eng, B. Fruhberger, A. Teplyakov, Surf. Sci. 397, 237 (1998)

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We thank the financial support from the Korean Ministry of Knowledge Economy (Project No. 1030811) and KIST institutional funding (Project No. 2E22114). We also thank NNCI Analysis Center at KIST for XRD measurements and Nano-analysis Center for XPS and TEM analysis. The NEXAFS measurements at PLS were supported in part by MOST and POSTECH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Ku Park.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jie, H., Lee, Hb., Chae, KH. et al. Nitrogen-doped TiO2 nanopowders prepared by chemical vapor synthesis: band structure and photocatalytic activity under visible light. Res Chem Intermed 38, 1171–1180 (2012). https://doi.org/10.1007/s11164-011-0456-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-011-0456-y

Keywords

  • TiO2 nanopowders
  • Chemical vapor synthesis
  • Nitrogen doping
  • Visible light photocatalysis
  • Methylene blue degradation