Abstract
During chemical vapor synthesis of TiO2 nanopowders, nitrogen atoms were doped into the crystal lattice of TiO2. The nitrogen atoms were predominantly incorporated substitutionally in the crystal lattice of TiO2 nanopowders up to the doping level of 1.25 mol% nitrogen, whereas they were in both interstitial and substitutional sites over about 1.43 mol% nitrogen. From the photocatalytic activity of nitrogen-doped TiO2 estimated by decomposition of methylene blue under visible light, it was found that the substitutional nitrogen anions appearing at the low level doping was beneficial to its photocatalytic activity, whereas the interstitial ones appearing at the high level doping over 1.25 mol% nitrogen were not. The improved photocatalytic activity due to the substitutionally doped nitrogen was attributed to band gap narrowing which was confirmed by the studies of XPS, near edge X-ray absorption fine structure, and UV–Vis absorption.
This is a preview of subscription content, access via your institution.






References
S.W. Liu, J.G. Yu, M. Jaroniec, Chem. Mater. 23, 4085 (2011)
M.R. Hoffmann, S.T. Martin, W.Y. Choi, D.W. Bahnemann, Chem. Rev. 95, 69 (1995)
W. Zhao, C.C. Chen, X.Z. Li, J.C. Zhao, H. Hidaka, N. Serpone, J. Phys. Chem. B 106, 5022 (2002)
P.F. Ji, M. Takeuchi, T.M. Cuong, J.L. Zhang, M. Matsuoka, M. Anpo, Res. Chem. Intermed. 36, 327 (2010)
S. Bingham, W.A. Daoud, J. Mater. Chem. 21, 2041 (2011)
R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 293, 269 (2001)
A. Ghicov, J.M. Macak, H. Tsuchiya, J. Kunze, V. Haeublein, L. Frey, P. Schmuki, Nano Lett. 6, 1080 (2006)
S. Livraghi, M.C. Paganini, E. Giamello, A. Selloni, C. Di Valentin, G. Pacchioni, J. Am. Chem. Soc. 128, 15666 (2006)
M. Sathish, B. Viswanathan, R.P. Viswanath, C.S. Gopinath, Chem. Mater. 17, 6349 (2005)
Y. Wang, C.X. Feng, M. Zhang, J.J. Yang, Z.J. Zhang, Appl. Catal. B Environ. 104, 268 (2011)
D.Q. Zhao, X.W. Huang, B.L. Tian, S.M. Zhou, Y.C. Li, Z.L. Du, Appl. Phys. Lett. 98, 162107 (2011)
Y. Yang, H. Zhong, C.X. Tian, Res. Chem. Intermed. 37, 91 (2011)
T. Morikawa, R. Asahi, T. Ohwaki, K. Aoki, Y. Taga, Jpn. J. Appl. Phys. 40, L561 (2001)
C. Di Valentin, G. Pacchioni, A. Selloni, S. Livraghi, E. Giamello, J. Phys. Chem. B 109, 11414 (2005)
H. Irie, Y. Watanabe, K. Hashimoto, J. Phys. Chem. B 107, 5483 (2003)
R. Nakamura, T. Tanaka, Y. Nakato, J. Phys. Chem. B 108, 10617 (2004)
T. Ihara, M. Miyoshi, Y. Iriyama, O. Matsumoto, S. Sugihara, Appl. Catal. B Environ. 42, 403 (2003)
R. Rattanakam, S. Supothina, Res. Chem. Intermed. 35, 263 (2009)
G. Liu, F. Li, Z.G. Chen, G.Q. Lu, H.M. Cheng, J. Solid State Chem. 179, 331 (2006)
Y. Liu, X. Chen, J. Li, C. Burda, Chemosphere 61, 11 (2005)
C. Belver, R. Bellod, A. Fuerte, M. Fernandez-Garcia, Appl. Catal. B Environ. 65, 301 (2006)
S.W. Yang, L. Gao, J. Am. Ceram. Soc. 87, 1803 (2004)
F. Peng, L.F. Cai, L. Huang, H. Yu, H.J. Wang, J. Phys. Chem. Solids 69, 1657 (2008)
Y. Cong, J.L. Zhang, F. Chen, M. Anpo, J. Phys. Chem. C 111, 6976 (2007)
D. Li, H. Haneda, S. Hishita, N. Ohashi, Mater. Sci. Eng. B Solid 117, 67 (2005)
J.L. Gole, J.D. Stout, C. Burda, Y.B. Lou, X.B. Chen, J. Phys. Chem. B 108, 1230 (2004)
H. Park, H. Jie, K.H. Chae, J.K. Park, M. Anpo, D.Y. Lee, Curr. Appl. Phys. 8, 778 (2008)
B.D. Cullity, Elements of X-Ray Diffraction, 2nd edn. (Addison-Wesley, Reading, 1978), p. 294
X.B. Chen, C. Burda, J. Phys. Chem. B 108, 15446 (2004)
N.C. Saha, H.G. Tompkins, J. Appl. Phys. 72, 3072 (1992)
S.G. Sugai, H. Watanabe, T. Kioka, H. Miki, K. Kawasaki, Surf. Sci. 259, 109 (1991)
J.A. Rodriguez, T. Jirsak, J. Dvorak, S. Sambasivan, D. Fischer, J. Phys. Chem. B 104, 319 (2000)
J.G. Chen, Surf. Sci. Rep. 30, 1 (1997)
V.S. Lusvardi, M.A. Barteau, J.G. Chen, J. Eng, B. Fruhberger, A. Teplyakov, Surf. Sci. 397, 237 (1998)
Acknowledgment
We thank the financial support from the Korean Ministry of Knowledge Economy (Project No. 1030811) and KIST institutional funding (Project No. 2E22114). We also thank NNCI Analysis Center at KIST for XRD measurements and Nano-analysis Center for XPS and TEM analysis. The NEXAFS measurements at PLS were supported in part by MOST and POSTECH.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Jie, H., Lee, Hb., Chae, KH. et al. Nitrogen-doped TiO2 nanopowders prepared by chemical vapor synthesis: band structure and photocatalytic activity under visible light. Res Chem Intermed 38, 1171–1180 (2012). https://doi.org/10.1007/s11164-011-0456-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11164-011-0456-y
Keywords
- TiO2 nanopowders
- Chemical vapor synthesis
- Nitrogen doping
- Visible light photocatalysis
- Methylene blue degradation