Skip to main content
Log in

Autocatalytic gas-phase dehydrogenation of ethane

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Homogeneous gas-phase pyrolysis of ethane by continuous CO2 laser irradiation was used in our experiments for bulk heating of the reaction mixture. Laser energy was absorbed by ethylene, the main product of ethane dehydrogenation, and transferred to the reaction medium via collisional relaxation. A mechanism of ethane dehydrogenation is suggested to describe the pyrolysis process. The mechanism is autocatalytic in respect of ethylene and includes ethane–ethylene interaction with the formation of methyl and propyl radicals. Rate constants of elementary reactions, selectivity, and yields of pyrolysis products were determined. The composition of ethane dehydrogenation products determined in the experiments was substantially different from the calculated thermodynamic equilibrium composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. N.N. Semenov, Some Problems of Chemical Kinetics and Reactivity (Pergamon Press, London, 1958–1959)

  2. F.O. Rice, K.F. Herzfeld, J. Am. Chem. Soc. 56, 284 (1934)

    Article  CAS  Google Scholar 

  3. K.J. Laidler, Reaction Kinetics (Pergamon Press, London, 1963)

    Google Scholar 

  4. R.I. Masel, Chemical Kinetics and Catalysis (Wiley, New York, 2001)

    Google Scholar 

  5. J.A. Moulijn, M. Makkee, van A. Diepen, Chemical Process Technology (Wiley, Chichester, 2001)

    Google Scholar 

  6. K.M. Sundaram, G.F. Froment, Chem. Eng. Sci. 32, 609 (1977)

    Article  CAS  Google Scholar 

  7. D. Edelson, D.L. Allara, Int. J. Chem. Kinet. 12, 605 (1980)

    Article  CAS  Google Scholar 

  8. D. Edelson, D.L. Allara, Am. Inst. Chem. Eng. J. 19, 638 (1973)

    Article  CAS  Google Scholar 

  9. M. Dente, E. Ranzi, A.G. Goossens, Comput. Chem. Eng. 3, 61 (1979)

    Article  CAS  Google Scholar 

  10. S. Barendregt, M. Dente, E. Ranzi, F. Duim, Oil Gas J. 79, 90 (1981)

    Google Scholar 

  11. J.H. Kiffer, Int. J. Chem. Kinet. 17, 225 (1985)

    Article  Google Scholar 

  12. J. Huang, S.L. Suib, J. Phys. Chem. 97, 9403 (1993)

    Article  CAS  Google Scholar 

  13. A. Dombi, P. Huhn, Int. J. Chem. Kinet. 18, 227 (1986)

    Article  CAS  Google Scholar 

  14. S.L. Yao, E. Suzuki, A. Nakayama, Plasma Chem. Plasma Process. 21, 651 (2001)

    Article  CAS  Google Scholar 

  15. S.L. Yao, E. Suzuki, N. Meng, A. Nakayama, Plasma Chem. Plasma Process. 22, 225 (2002)

    Article  CAS  Google Scholar 

  16. J.R. Fincke, R.P. Anderson, T. Hyde, B.A. Detering, R. Wright, R.L. Bewley, D.C. Haggard, W.D. Swank, Plasma Chem. Plasma Process. 22, 105 (2002)

    Article  CAS  Google Scholar 

  17. A.V. Ponomarev, I.E. Makarov, B.G. Ershov, A.Yu. Tsivadze, Phys. Chem. (2007). doi:10.1134/S0012501607100028

  18. C. Gueret, M. Daroux, F. Billaud, Chem. Eng. Sci. 52, 815 (1997)

    Article  CAS  Google Scholar 

  19. C.-C. Chiang, G.B. Skinner, J. Phys. Chem. 85, 3126 (1981)

    Article  CAS  Google Scholar 

  20. C. Rivero, M.V. Pilipovik, Chem. Eng. J. 133, 133 (2007)

    Article  Google Scholar 

  21. C.F. Goldsmith, H. Ismail, W.H. Green, J. Phys. Chem. A. 113, 13357 (2009)

    Article  CAS  Google Scholar 

  22. S.P. Krishtal, A.M. Mebel, R.I. Kaiser, J. Phys. Chem. A 113, 11112 (2009)

    Article  CAS  Google Scholar 

  23. M. Zierhut, W. Roth, I. Fisher, J. Phys. Chem. A 108, 8125 (2004)

    Article  CAS  Google Scholar 

  24. H. Du, J.P. Hessler, P.J. Ogren, J. Phys. Chem. 100, 974 (1996)

    Article  CAS  Google Scholar 

  25. A.F. Wagner, D.M. Wardlaw, J. Phys. Chem. 92, 2462 (1988)

    Article  CAS  Google Scholar 

  26. Y. Feng, J.T. Niiranen, A. Bencsura, V.D. Knyazev, D. Gutman, W. Tsang, J. Phys. Chem. 97, 871 (1993)

    Article  CAS  Google Scholar 

  27. G.F. Glasier, P.D. Pacey, Carbon 39, 15 (2001)

    Article  CAS  Google Scholar 

  28. A. Diefenbach, F.M. Bickelhaupt, J. Phys. Chem. A 108, 8460 (2004)

    Article  CAS  Google Scholar 

  29. D.B. Pedersen, J.M. Parnis, R.D. Lafleur, J. Phys. Chem. A 108, 2682 (2004)

    Article  CAS  Google Scholar 

  30. D.K. Zerkle, M.D. Allendorf, M. Wolf, O. Deutschmann, J. Catal. 196, 18 (2000)

    Article  CAS  Google Scholar 

  31. V.N. Snytnikov, T.I. Mischenko, Vl.N. Snytnikov, O.P. Stoyanovskaya, V.N. Parmon, Kinet. Catal. (2010). doi:10.1134/S0023158410010039

  32. V.N. Snytnikov, T.I. Mischenko, Vl.N. Snytnikov, I.G. Chernykh, Chem. Eng. J. 150, 231 (2009)

    Article  CAS  Google Scholar 

  33. J.A. Manion, R.E. Huie, R.D. Levin, D.R. Burgess Jr., V.L. Orkin, W. Tsang, W.S. McGivern, J.W. Hudgens, V.D. Knyazev, D.B. Atkinson, E. Chai, A.M. Tereza, C.-Y. Lin, T.C. Allison, W.G. Mallard, F. Westley, J.T. Herron, R.F. Hampson, D.H. Frizzell, NIST Chemical Kinetics Database, NIST Standard Reference Database 17, Version 7.0 (Web Version), Release 1.4.3, Data version 2008.12, National Institute of Standards and Technology, Gaithersburg. http://kinetics.nist.gov/. Retrieved September 12, 2011

  34. C.H. Peng, B. Schlegel, Isr. J. Chem. 33, 449 (1993)

    CAS  Google Scholar 

  35. S. Grimme, J. Chem. Phys. 124, 034108 (2006)

    Article  Google Scholar 

  36. R. Krishnan, J.S. Binkley, R. Seeger, J.A. Pople, J. Chem. Phys. 72, 650 (1980)

    Article  CAS  Google Scholar 

  37. M.J. Frisch et al, Gaussian 09, Revision, A.1 (2009)

  38. J.E. Douglas, B.S. Rabinovitch, F.S. Looney, J. Chem. Phys. 23, 315 (1955)

    Article  CAS  Google Scholar 

  39. Aspen HYSYS. http://www.aspentech.com/. Retrieved September 12, 2011

  40. D.L. Allara, D. Edelson, Int. J. Chem. Kinet. 7, 479 (1975)

    Article  CAS  Google Scholar 

  41. C.P. Quinn, Trans. Faraday Soc. 59, 2543 (1963)

    Article  CAS  Google Scholar 

  42. A.B. Trenwith, J. Chem. Soc. Faraday Trans. 2 82, 457 (1986)

    Google Scholar 

  43. P.D. Pacey, J.H. Wimalasena, Chem. Phys. Lett. 76, 433 (1980)

    Article  CAS  Google Scholar 

  44. V.A. Vshivkov, O.P. Sklyar, V.N. Snytnikov, I.G. Chernykh, Vych. Tekhnol. 11, 35 (2006) (in Russian)

    Google Scholar 

Download references

Acknowledgment

The authors acknowledge the Russian Federation President Grant for the Leading Scientific Schools for funding (NSh 3156.2010.3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei E. Malykhin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Snytnikov, V.N., Mishchenko, T.I., Snytnikov, V.N. et al. Autocatalytic gas-phase dehydrogenation of ethane. Res Chem Intermed 38, 1133–1147 (2012). https://doi.org/10.1007/s11164-011-0449-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-011-0449-x

Keywords

Navigation