Skip to main content
Log in

Heterogeneous reactions of HONO formation from NO2 and HNO3: a review

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The photolysis of nitrous acid (HONO) is an important reaction of atmospheric chemistry due to the fact that it can be the source of OH radical in the troposphere. Despite its role as a radical precursor, the chemical mechanisms leading to HONO formation are not well understood. It is commonly assumed that HONO formation is due to both homogeneous and heterogeneous processes involving NOx (mixture of NO and NO2) in which the kinetic and mechanistic details are still under investigation. In this discussion, we would like to highlight the formation of HONO from NO2 and nitric acid (HNO3) in the presence of organic particulate. We understood that in the real case, many parameters can influence the reaction mechanism; however, this is just an effort to have a better understanding of the study of HONO formation in the atmospheric process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. M.M. Maricq, Chemical characterization of particulate emissions from diesel engines: a review. Aerosol Sci. 38, 1079–1118 (2007)

    Article  CAS  Google Scholar 

  2. L.A. Barrie, Atmos. Environ. 20, 643–663 (1986)

    Article  CAS  Google Scholar 

  3. A.D.A. Hansen, T. Novakov, J. Atmos. Chem. 9, 347–361 (1989)

    Article  CAS  Google Scholar 

  4. A.D.A. Hansen, B.A. Bodhaine, E.G. Dutton, R.C. Schenell, Geophys. Res. Lett. 15, 1193–1196 (1988)

    Article  CAS  Google Scholar 

  5. A. Indarto, Environ. Eng. Sci. 26(5), 251–257 (2009)

    Google Scholar 

  6. Z.A. Mansurov, Combust Explos. Shock Wave. 41(6), 727–744 (2005)

    Article  Google Scholar 

  7. H. Jander, H.Gg. Wagner, Combust. Explos. Shock Wave. 42(6), 696–701 (2006)

    Article  Google Scholar 

  8. J. Xi, B.J. Zhong, Chem. Eng. Technol. 29(6), 665–673 (2006)

    Article  CAS  Google Scholar 

  9. M. Frenklach, J. Warnatz, Combus. Sci. Technol. 51, 265 (1987)

    Article  CAS  Google Scholar 

  10. R.M. Santiago, A. Indarto, J. Mol. Model. 14, 1203–1208 (2008)

    Article  CAS  Google Scholar 

  11. A. Indarto, A. Giordana, G. Ghigo, A. Maranzana, G. Tonachini, Phys. Chem. Chem. Phys. 12, 9429–9440 (2010)

    Article  CAS  Google Scholar 

  12. A.V. Krestinin, Chem. Physic Rep. 17(8), 1441 (1998)

    Google Scholar 

  13. A.V. Krestinin, Proc. Combust. Symp. 27, 1557 (1998)

    Article  Google Scholar 

  14. A. Indarto, A. Giordana, G. Ghigo, G. Tonachini, J. Phys. Org. Chem. 23, 400–410 (2009)

    Google Scholar 

  15. H.F. Calcote, Combust Flame 42, 215–242 (1981)

    Article  CAS  Google Scholar 

  16. N.A. Slavinskaya, M. Braun-Unkhoff, and Frank, P, Proc. European Combust. Meet (2005)

  17. P.A. Vlasov, and J. Warnatz, German-Russian Workshop on Reactive Flow, Berlin (2002)

  18. G. L. Agafonov, I. Naydenova, M. Nullmeier, P. A. Vlasov, and J. Warnatz, Proc. Int. Collis Dyn Explosion Reactive Syst (2005)

  19. J.Z. Wen, M.J. Thomson, M.F. Lightstone, S.N. Rogak, Energy Fuel. 20, 547–559 (2006)

    Article  CAS  Google Scholar 

  20. J.Z. Wen, M.J. Thomson, and M.F. Lightstone, Proc. Join Meet. US Sect. Combust. Inst. (2005)

  21. S. Wang, R.C. Flagan, J.H. Seinfeld, Atmos. Environ. 26a(3), 421–434 (1992)

    CAS  Google Scholar 

  22. J. Mäkela, P. Aalto, V. Jokinen, T. Pohja, A. Nissinen, S. Palmroth, T. Markkanen, K. Seitsonen, H. Lihavainen, M. Kulmala, Geophys. Res. Lett. 24, 1219–1222 (1997)

    Article  Google Scholar 

  23. F. Karagulian, M.J. Rossi, J Phys. Chem. A 111(10), 1914–1926 (2007)

    Article  CAS  Google Scholar 

  24. K. Lee, J. Xue, A.S. Geyh, H. Ozkaynak, B.P. Leaderer, C.J. Weschler, J.D. Spengler, Environ. Health Perspect. 110(2), 145–150 (2002)

    Article  CAS  Google Scholar 

  25. B.J, Finlayson-Pitts, J.N. Pitts Jr., Chemistry of the upper and lower atmosphere—theory, experiments, and applications. Academic Press, San Diego (2000)

  26. Y. Yu, B. Galle, A. Panday, E. Hodson, R. Prinn, S. Wang, Atmos. Chem. Phys. 9, 6401–6415 (2009)

    Article  CAS  Google Scholar 

  27. F. Sakamaki, S. Hatakeyama, H. Akimoto, Int. J. Chem. Kinetic. 15, 1013–1029 (1983)

    Article  CAS  Google Scholar 

  28. R. Svensson, E. Ljungstrom, O. Lindqvist, Atmos. Environ. 21, 1529–1539 (1987)

    Article  CAS  Google Scholar 

  29. C.A. Longfellow, A.R. Ravishankara, D.R. Hanson, Geophys. Res. 104, 13833–13840 (1999)

    Article  CAS  Google Scholar 

  30. A. Messere, R. Niessnera, U. Pöschl, Carbon 44(2), 307–324 (2006)

    Article  Google Scholar 

  31. Y.F. Elshorbany et al., Atmos. Chem. Phys. Discuss. 8, S11192–S11200 (2009)

    Google Scholar 

  32. A. Rondon, E. Sanhueza, Tellus B 41, 474–477 (1988)

    Google Scholar 

  33. L.D. Ziemba, J.E. Dibb, R.J. Griffin, C.H. Anderson, S.I. Whitlow, B.L. Lefer, B. Rappenglück, J. Flynn, Atmos. Environ. 44, 4081–4089 (2010)

    Article  CAS  Google Scholar 

  34. T.G. Koch, J.R.P. Sodeau, J Phys. Chem. 99(27), 10824–10829 (1995)

    Article  CAS  Google Scholar 

  35. A. Febo, C. Perrino, I. Allegrini, Atmos. Environ. 30, 3599–3609 (1996)

    Article  CAS  Google Scholar 

  36. R. Asatryan, J.W. Bozzelli, J.M. Simmie, Int J. Chem. Kinet. 39(7), 378–398 (2006)

    Article  Google Scholar 

  37. M.T. Nguyen, R. Sumathi, D. Sengupta, J. Peeters, Chem. Phys. 230, 1–11 (1998)

    Article  CAS  Google Scholar 

  38. G. Lammel, J.N. Cape, Chem. Soc. Rev. 36, 1–369 (1996)

    Google Scholar 

  39. P. Wiesen, J. Kleffmann, R. Kurtenbach, K.H. Becker, Faraday Discuss. 100, 121–127 (1995)

    Article  CAS  Google Scholar 

  40. X. Zhou, H. Gao, Y. He, G. Huang, S.B. Bertman, K. Civerolo, J. Schwab, Geophys. Res. Lett. 30, 23–2217 (2003)

    Google Scholar 

  41. B. Aumont, F. Chervier, S. Laval, Atmos. Environ. 37, 487–498 (2003)

    Article  CAS  Google Scholar 

  42. M. Baumgartner, E. Bock, R. Conrad, Chemosphere 24, 1943–1960 (1992)

    Article  Google Scholar 

  43. R. Bröske, J. Kleffmann, P. Wiesen, Atmos. Chem. Phys. Discuss. 3, 597–613 (2003)

    Article  Google Scholar 

  44. J. Kleffmann, Chem. Phys. Chem. 8(8), 1137–1144 (2007)

    Article  CAS  Google Scholar 

  45. F. Rohrer, B. Bohn, T. Brauers, D. Brüning, F.J. Johnen, A. Wahner, J. Kleffmann, Amos. Chem. Phys. 5, 2189–2201 (2005)

    CAS  Google Scholar 

  46. C. George, R.S. Strekowski, J. Kleffmann, K. Stemmler, M. Ammann, Faraday Discuss. 130, 195–210 (2005)

    Article  CAS  Google Scholar 

  47. K. Stemmler, M. Ndour, Y. Elshorbany, J. Kleffmann, B. D’Anna, C. George, B. Bohn, M. Ammann, Atmos. Chem. Phys. 7, 16–4248 (2007)

    Article  Google Scholar 

  48. M. Ammann, M. Kalberer, D.T. Jost, L. Tobler, E. Rössler, D. Piguet, H.W. Gäggeler, U. Baltensperger, Nature 395, 157–160 (1998)

    Article  CAS  Google Scholar 

  49. M. Kalberer, M. Ammann, F. Arens, H.W. Gäggeler, U. Baltensper, J. Geophys. Res. 104, 13825–13832 (1999)

    Article  CAS  Google Scholar 

  50. A. Gerecke, A. Thielmann, L. Gutzwiller, M.J. Rossi, Geophys. Res. Lett. 25, 2453–2456 (1998)

    Article  CAS  Google Scholar 

  51. J. Kleffmann, K.H. Becker, M. Lackhoff, P. Wiesen, Phys. Chem. Chem. Phys. 1, 5443–5450 (1999)

    Article  CAS  Google Scholar 

  52. J. Kleffmann, J. Heland, R. Kurtenbach, J. C. Lörzer, P. Wiesen, M. Ammann, L. Gutzwiller, M. Rodenas Garcia, M. Pons, K. Wirtz, V. Scheer, and R. Vogt, CMD Annual Rep., 177–180 (2000)

  53. M. Ammann, F. Arens, L. Gutzwiller, U. Baltensperger, and H. W. Gäggeler, CMD Annual Rep. 140–143 (2000)

  54. M.S. Akhter, A.R. Chughtai, D.M. Smith, J. Phys. Chem. 88, 5334–5342 (1984)

    Article  CAS  Google Scholar 

  55. D.A. Hauglustaine, S. Madronuch, B.A. Ridley, J.G. Walega, C.A. Cantrell, R.E. Shetter, G. Hüber, J. Geophys. Res. 101, 14681–14696 (1996)

    Article  CAS  Google Scholar 

  56. N.A. Saliba, H. Yang, B.J. Finlayson-Pitts, J. Phys. Chem. A. 105, 10339–10346 (2001)

    Article  CAS  Google Scholar 

  57. M.S. Muñoza, M.J. Rossi, Phys. Chem. Chem. Phys. 4, 5110–5118 (2002)

    Google Scholar 

  58. D. Stadler, M.J. Rossi, Phys. Chem. Chem. Phys. 2, 5420–5429 (2000)

    Article  CAS  Google Scholar 

  59. K. Tabor, L. Gutzwiller, M.J. Rossi, J. Phys. Chem. 98, 6172–6186 (1994)

    Article  CAS  Google Scholar 

  60. M.S. Salgado, M.J. Rossi, Int J. Chem. Kinetic. 34(11), 620–631 (2002)

    Article  CAS  Google Scholar 

  61. M.O. Andreae, T.W. Andreae, R.J. Ferek, H. Raemdonk, Sci. Total Environ. 36, 73–80 (1984)

    Article  CAS  Google Scholar 

  62. A.D. Clarke, R.E. Weiss, R.J. Charlson, Sci. Total Environ. 36, 92–102 (1984)

    Google Scholar 

  63. A.D. Clarke, Aerosol Sci. Technol. 10, 161–171 (1989)

    Article  CAS  Google Scholar 

  64. C.A. Rogaski, D.M. Golden, L.R. Williams, Geophys. Res. Lett. 24, 381–384 (1997)

    Article  CAS  Google Scholar 

  65. C.A. Jornod, H.vd. Bergh, M.J. Rossi, Phys. Chem. Chem. Phys. 2, 5584–5593 (2000)

    Article  Google Scholar 

  66. Å. Sjödin, Environ. Sci. Technol. 22, 1086–1089 (1988)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonius Indarto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Indarto, A. Heterogeneous reactions of HONO formation from NO2 and HNO3: a review. Res Chem Intermed 38, 1029–1041 (2012). https://doi.org/10.1007/s11164-011-0439-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-011-0439-z

Keywords

Navigation