Skip to main content
Log in

A study on Zn-based catal-sorbents for the simultaneous removal of hydrogen sulfide and ammonia at high temperature

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

To simultaneously remove hydrogen sulfide and ammonia from hot coal gases, the ammonia decomposition abilities of various metal oxide catalysts were tested in the absence/presence of hydrogen sulfide, at 650 °C. Cobalt oxide, molybdenum oxide, and nickel oxide have high ammonia decomposition abilities (>95%) in the absence of hydrogen sulfide, but such abilities rapidly decreased during the reaction in the presence of hydrogen sulfide. To improve the simultaneous removal abilities of metal oxides, Zn-based catal sorbents were prepared via impregnation with various metals, such as cobalt, nickel, and molybdenum, on zinc oxide. The CZ-30 (promoted with 30 wt% cobalt oxide on zinc oxide) and NZ-30 (promoted with 30 wt% nickel oxide on zinc oxide) catal sorbents showed excellent sulfur removal capacities, which, calculated until the breakthrough point, were 0.35 and 0.39 g S/g catal sorbent, respectively, while MZ-30 promoted with molybdenum showed a low sulfur removal capacity of 0.08 g S/g catal sorbent. The ammonia decomposition ability of CZ-30, however, increased more than 18 times compared with Co3O4, whose ammonia decomposition ability was more than 95% until 465 min, even though the ammonia decomposition ability of NZ-30 sharply decreased after 30 min. The CZ catal sorbent is a good candidate for the simultaneous removal of ammonia and hydrogen sulfide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. T. Woudstra, N. Woudstra, J. Energy Inst. 68, 157 (1995)

    CAS  Google Scholar 

  2. S.K. Gangwal, S.M. Harkins, M.C. Woods, S.C. Jain, S.J. Bossart, Environ. Prog. 8, 265 (1989)

    Article  CAS  Google Scholar 

  3. R.B. Slimane, J. Abbasian, Fuel Process. Technol. 70, 97 (2001)

    Article  CAS  Google Scholar 

  4. R.B. Slimane, J. Abbasian, Ind. Eng. Chem. Res. 39, 1338 (2000)

    Article  CAS  Google Scholar 

  5. R. Gupta, S.K. Gangwal, S.C. Jain, Energy Fuels 6, 21 (1992)

    Article  CAS  Google Scholar 

  6. H.K. Jun, S.Y. Jung, T.J. Lee, J.C. Kim, Korean J. Chem. Eng. 21, 425 (2004)

    Article  CAS  Google Scholar 

  7. E. Sasaoka, N.S. Manabe, M.A. Uddin, Y. Sakata, Ind. Eng. Chem. Res. 38, 958 (1999)

    Article  CAS  Google Scholar 

  8. S.O. Ryu, N.K. Park, C.H. Chang, J.C. Kim, T.J. Lee, Ind. Eng. Chem. Res. 43, 1466 (2004)

    Article  CAS  Google Scholar 

  9. T.J. Lee, W.T. Kwon, W.C. Chang, J.C. Kim, Korean J. Chem. Eng. 14, 513 (1997)

    Article  CAS  Google Scholar 

  10. J. Hepola, P. Simell, Appl. Catal. B 14, 305 (1997)

    Article  CAS  Google Scholar 

  11. H.K. Jun, T.J. Lee, S.O. Ryu, J.C. Kim, Ind. Eng. Chem. Res. 40, 3547 (2001)

    Article  CAS  Google Scholar 

  12. H.K. Jun, J.H. Koo, T.J. Lee, S.O. Ryu, C.K. Yi, C.K. Ryu, J.C. Kim, Energy Fuels 18, 41 (2004)

    Article  CAS  Google Scholar 

  13. K. Jothimurugesan, S.K. Gangwal, Ind. Eng. Chem. Res. 37, 1929 (1998)

    Article  CAS  Google Scholar 

  14. W. Mojtahed, J. Abbasian, Fuel 74, 1698 (1995)

    Article  Google Scholar 

  15. Z.R. Ismagilov, R.A. Shkrabina, S.A. Yashnik, N.V. Shikina, I.P. Andrievskaya, S.R. Khairulin, V.A. Ushakov, J.A. Moulijin, I.V. Babich, Catal. Today 69, 351 (2000)

    Article  Google Scholar 

  16. A. Turk, E. Sakalis, J. Lessuck, H. Karamitsos, O. Rago, Environ. Sci. Technol. 23, 1242 (1989)

    Article  CAS  Google Scholar 

  17. P.F. Ng, L. Li, S. Wang, Z. Zhu, G. Lu, Z. Yan, Environ. Sci. Technol. 41, 3758 (2007)

    Article  CAS  Google Scholar 

  18. C. Petit, T.J. Bandosz, Environ. Sci. Technol. 43, 3033 (2008)

    Article  Google Scholar 

  19. W. Wang, N.Z. Ye, A. Andersson, I. Bjerle, Ind. Eng. Chem. Res. 38, 4175 (1999)

    Article  CAS  Google Scholar 

  20. Y. Ohtsuka, C. Xu, D. Kong, N. Tsubouchi, Fuel 83, 685 (2004)

    Article  CAS  Google Scholar 

  21. T. Hasegawa, M. Sato, Combust. Flame 114, 246 (1998)

    Article  CAS  Google Scholar 

  22. H.K. Jun, S.Y. Jung, T.J. Lee, C.K. Ryu, J.C. Kim, Catal. Today 87, 3 (2003)

    Article  CAS  Google Scholar 

  23. S.Y. Jung, S.J. Lee, J.J. Park, S.C. Lee, H.K. Jun, T.J. Lee, J.C. Kim, Sep. Purif. Technol. 63, 297 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Mid-career Researcher Program through NRF grant funded by the MEST (No. 2011-0000246). We gratefully acknowledge the financial supported by the Human Resources Development of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Knowledge Economy (No. 2008EAPHMP020000-2009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Chang Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, J.J., Park, C.G., Jung, S.Y. et al. A study on Zn-based catal-sorbents for the simultaneous removal of hydrogen sulfide and ammonia at high temperature. Res Chem Intermed 37, 1193–1202 (2011). https://doi.org/10.1007/s11164-011-0384-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-011-0384-x

Keywords

Navigation