Skip to main content
Log in

The photocatalytic properties of amorphous TiO2 composite films deposited by magnetron sputtering

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The preparation of amorphous TiO2 film coupled with various metal-oxide semiconductors and their photocatalytic activities evaluated by photo-degradation of methylene blue and rhodamine B aqueous solution are briefly reviewed. The proposed photoreaction mechanism of the amorphous composite semiconductor and the differences between amorphous TiO2-based films and crystalline TiO2 photocatalytic materials in terms of preparation and usage are addressed. The inactive intrinsic amorphous TiO2 film coupled with various metal oxides were found to gain high photocatalytic activity. These dopants induce forming new energy levels in the band gap of TiO2 to enhance the charge separation of the photoinduced electrons and holes and extend the light absorption of TiO2-based photocatalytic films into the visible region. In addition, two different effects of coupling metal oxides have been proved: the introduction of oxides of W, Cr, V, Ag, and Mo can significantly increase the photo-reactivity of amorphous TiO2 film, while the combination of oxides of Zr, Sn, Sb, Cu, Ta, Fe, and Ni cannot affect the inactivity of pure amorphous TiO2 film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. Madhavan, P. Maruthamuthu, S. Murugesan, S. Anandan, Appl. Catal. B 83, 8 (2008)

    Article  CAS  Google Scholar 

  2. O. Carp, C.L. Huisman, A. Reller, Prog. Solid State Chem. 32, 33 (2004)

    Article  CAS  Google Scholar 

  3. P.R. Gogate, A.B. Pandit, Adv. Environ. Res. 8, 501 (2004)

    Article  CAS  Google Scholar 

  4. F. Han, V.S.R. Kambala, M. Srinivasan, D. Rajarathnam, R. Naidu, Appl. Catal. A 359, 25 (2009)

    Article  CAS  Google Scholar 

  5. M. Anpo, M. Takeuchi, J. Catal. 216, 505 (2003)

    Article  CAS  Google Scholar 

  6. K. Hashimoto, H. Irie, A. Fujishima, Jpn. J. Appl. Phys. 1 44, 8269 (2005)

    Article  CAS  Google Scholar 

  7. M. Ni, M.K.H. Leung, D.Y.C. Leung, K. Sumathy, Renew. Sustain. Energy Rev. 11, 401 (2007)

    Article  CAS  Google Scholar 

  8. X.L. Nie, S.P. Zhuo, G. Maeng, K. Sohlberg, Int. J. Photoenergy 2009 (2009). doi:10.1155/2009/294042

  9. F.B. Li, X.Z. Li, Chemosphere 48, 1103 (2002)

    Article  CAS  Google Scholar 

  10. S. Sakthivel, M.V. Shankar, M. Palanichamy, B. Arabindoo, D.W. Bahnemann, V. Murugesan, Water Res. 38, 3001 (2004)

    Article  CAS  Google Scholar 

  11. D. Dvoranov, V. Brezov, M. Mazur, M.A. Malati, Appl. Catal. B 37, 91 (2002)

    Article  Google Scholar 

  12. J.C. Xu, Y.L. Shi, J.E. Huang, B. Wang, H.L. Li, J. Mol. Catal. A Chem. 219, 351 (2004)

    Article  CAS  Google Scholar 

  13. T. Ohno, M. Akiyoshi, T. Umebayashi, K. Asai, T. Mitsui, M. Matsumura, Appl. Catal. A 265, 115 (2004)

    Article  CAS  Google Scholar 

  14. J.J. Lin, S.M. Chen, S.S. Hu, J. Appl. Polym. Sci. 94, 1797 (2004)

    Article  CAS  Google Scholar 

  15. T. Umebayashi, T. Ymaki, H. Itoh, K. Asaia, Appl. Phys. Lett. 81, 454 (2002)

    Article  CAS  Google Scholar 

  16. O. Lorret, D. Francova, G. Waldner, N. Stelzer, Appl. Catal. B 91, 39 (2009)

    Article  CAS  Google Scholar 

  17. K.B. Dhanalakshmi, S. Latha, S. Anandan, P. Maruthamuthu, Int. J. Hydrog. Energy 26, 669 (2001)

    Article  CAS  Google Scholar 

  18. K. Gurunathan, P. Maruthamuthu, M.V.C. Sastri, Int. J. Hydrog. Energy 22, 57 (1997)

    Article  CAS  Google Scholar 

  19. K. Tennakone, J. Bandara, Appl. Catal. A 208, 335 (2001)

    Article  CAS  Google Scholar 

  20. W.J. Youngblood, S.H.A. Lee, K. Maeda, T.E. Mallouk, Acc. Chem. Res. 42, 1966 (2009)

    Article  CAS  Google Scholar 

  21. T.V. Nguyen, S. Kim, O.B. Yang, Catal. Commun. 5, 59 (2004)

    Article  CAS  Google Scholar 

  22. V. Keller, F. Garin, Catal. Commun. 4, 377 (2003)

    Article  CAS  Google Scholar 

  23. W.W. So, K.J. Kim, S.J. Moon, Int. J. Hydrog. Energy 29, 229 (2004)

    Article  CAS  Google Scholar 

  24. A.K.L. Sajjad, S. Shamaila, B.Z. Tian, F. Chen, J.L. Zhang, Appl. Catal. B 91, 397 (2009)

    Article  CAS  Google Scholar 

  25. H. Choi, E. Stathatos, D.D. Dionysiou, Appl. Catal. B 63, 60 (2006)

    Article  CAS  Google Scholar 

  26. M. Nakamura, A. Toru, Y. Hatanaka, D. Korzec, J. Engemann, J. Mater. Res. 16, 621 (2001)

    Article  CAS  Google Scholar 

  27. M. Nakamura, S. Kato, A. Toru, L. Sirghi, Y. Hatanaka, J. Appl. Phys. 90, 3391 (2001)

    Article  CAS  Google Scholar 

  28. Y. Hatanaka, H. Naito, S. Itou, M. Kando, Appl. Surf. Sci. 244, 554 (2005)

    Article  CAS  Google Scholar 

  29. J.M. Huang, Y.X. Li, G.D. Zhao, X.P. Cai, T. Nonferr, Trans. Nonferr. Met. Soc. 16, 280 (2006)

    Article  Google Scholar 

  30. J.M. Huang, Y.X. Li, X.P. Cai, P. Zhao, J. Wuhan Univ. Technol. 23, 610 (2008)

    Article  CAS  Google Scholar 

  31. J.M. Huang, L. Zhao, X.P. Cai, X.Y. Zhang, J. Funct. Mater. 38, 1049 (2007)

    CAS  Google Scholar 

  32. U. Diebold, Surf. Sci. Rep. 48, 53 (2003)

    Article  CAS  Google Scholar 

  33. Y. Yin, J.F. Jiang, Q.Y. Cai, B.C. Cai, Appl. Surf. Sci. 199, 319 (2002)

    Article  CAS  Google Scholar 

  34. K. Arima, H. Kakiuchi, M. Ikeda, K. Endo, M. Morita, Y. Mori, Surf. Sci. 572, 449 (2004)

    Article  CAS  Google Scholar 

  35. A.J. Nozik, R. Memming, J. Phys. Chem. 100, 13061 (1996)

    Article  CAS  Google Scholar 

  36. A.L. Linsebigler, G.Q. Lu, J.T. Yates, Chem. Rev. 95, 735 (1995)

    Article  CAS  Google Scholar 

  37. D.P. Norton, Mater. Sci. Eng. R 43, 139 (2004)

    Article  Google Scholar 

  38. K. Muthu Karuppasamy, A. Subrahmanyam, Sol. Energy Mater. Sol. C 92, 1322 (2008)

    Article  CAS  Google Scholar 

  39. M. Gratzel, Nature 414, 338 (2001)

    Article  CAS  Google Scholar 

  40. I. Paramasivam, Y.C. Nah, C. Das, N.K. Shrestha, P. Schmuki, Chem. Eur. J. 16, 8993 (2010)

    Article  CAS  Google Scholar 

  41. X.C. Wang, J.C. Yu, Y.L. Chen, L. Wu, X.Z. Fu, Environ. Sci. Technol. 40, 2369 (2006)

    Article  CAS  Google Scholar 

  42. H.M. Yang, R.R. Shi, K. Zhang, Y.H. Hu, A.D. Tang, X.W. Li, J. Alloy Compd. 398, 200 (2005)

    Article  CAS  Google Scholar 

  43. Z.J. Zou, Y. Liu, H.Y. Li, Y.C. Liao, C.S. Xie, J. Comb. Chem. 12, 363 (2010)

    Article  CAS  Google Scholar 

  44. D. Li, H. Haneda, N. Ohashi, S. Hishita, Y. Yoshikawa, Catal. Today 93–95, 895 (2004)

    Article  Google Scholar 

  45. F. Chen, Z. Deng, X. Li, J. Zhang, J. Zhao, Chem. Phys. Lett. 415, 85 (2005)

    Article  CAS  Google Scholar 

  46. J. Sheng, L. Shivalingappa, J. Karasawa, T. Fukami, Vacuum 51, 623 (1998)

    Article  CAS  Google Scholar 

  47. J.M. Huang, X.P. Cai, P. Zhao, Y.X. Li, Chin. J. Vac. Sci. Technol. 29, 209 (2009)

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful for the funding support of the National High Technology Research and Development Program of China (No. 2008AA031101) and the Science and Technology Innovation Fund for Graduate Students of Chongqing University (No. CDJZR11130005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiamu Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, J., Liu, Y., Lu, L. et al. The photocatalytic properties of amorphous TiO2 composite films deposited by magnetron sputtering. Res Chem Intermed 38, 487–498 (2012). https://doi.org/10.1007/s11164-011-0365-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-011-0365-0

Keywords

Navigation