Skip to main content
Log in

Reaction of hydroxyl radicals with S-nitrosothiols: Formation of thiyl radical (RS) as the intermediate

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The decomposition studies of S-nitrosothiols (RSNO) are important due to their potential role in vivo in connection with the storage and transport of nitric oxide (NO) within the body. Reactions of hydroxyl radicals (OH) with a number of RSNOs (S-nitroso derivatives of N-acetyl-dl-penicillamine, l-cysteinemethylester, N-acetylcysteamine, and dl-penicillamine) in aqueous medium at neutral and acidic pH have been reported in the present study. Radiation chemical technique (steady state and pulse radiolysis) has been utilized for the determination of the reaction rate constants, the end product analyses, and the transient intermediate species. The rate constants for the reaction of OH with the selected RSNOs were determined using a competition kinetic method with 2′-deoxy-d-ribose as the competitor. All the rate constants were found to be of the order of diffusion controlled (1010 M−1 s−1). The degradation yield of RSNOs was found to be quantitative (i.e., G(–RSNO) ≈ G(OH)) at neutral and acidic pH. The major products of decomposition were the respective disulfide (RSSR) and nitrite (NO2 ). A good material balance is also obtained between the degradation yield and the formation of the products (i.e., G(–RSNO) ≈ G(RSSR) + G(NO2 )). The major transient intermediate was the thiyl radical (RS). Its intermediacy was confirmed by making use of the electron transfer reaction of 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonate) (ABTS2−) to RS, which results in the formation of ABTS•− having a transient absorption spectrum with λmax at 410 nm. Based on these results, a generalized reaction mechanism is deduced for the reaction of OH with RSNO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. P.G. Wang, M. Xian, X. Tang, X. Wu, Z. Wen, T. Cai, A. Janczuk, J. Chem. Rev. 102, 1091–11343 (2002)

    Article  CAS  Google Scholar 

  2. L. Liu, Y. Yan, M. Zeng, J. Zhang, M.A. Hanes, G. Ahearn, T.J. McMahon, T. Dickfeld, H.E. Marshall, L.G. Que, J.S. Stamler, Cell 116, 617–628 (2004)

    Article  CAS  Google Scholar 

  3. D.L.H. Williams, Acc. Chem. Res. 32, 869–876 (1999)

    Article  CAS  Google Scholar 

  4. D.L.H. Williams, Methods Enzymol. 268, 299–308 (1996)

    Article  CAS  Google Scholar 

  5. A.F. Vanin, A.A. Papina, V.A. Serezhenkov, W.H. Koppenol, Nitric Oxide 10, 60–73 (2004)

    Article  CAS  Google Scholar 

  6. V.R. Zhelyaskov, K.R. Gee, D.W. Godwin, Photchem. Photobiol. 67, 282–288 (1998)

    Article  CAS  Google Scholar 

  7. P.D. Wood, B. Mutus, R.W. Redmond, Photchem. Photobiol. 64, 518–524 (1996)

    Article  CAS  Google Scholar 

  8. V.M. Manoj, C.T. Aravindakumar, Chem. Commun. 2361–2362 (2000)

    Google Scholar 

  9. V.M. Manoj, C.T. Aravindakumar, Org. Biomol. Chem. 1, 1171–1175 (2003)

    Article  CAS  Google Scholar 

  10. E. Ford, M.N. Hughes, P. Wardman, J. Biol. Chem. 277, 2430–2436 (2002)

    Article  CAS  Google Scholar 

  11. V.M. Manoj, H. Mohan, U.K. Aravind, C.T. Aravindakumar, Free Rad. Biol. Med. 41, 1240–1246 (2006)

    Article  CAS  Google Scholar 

  12. L.A. Peterson, T. Wagene, H. Sies, Chem. Res. Toxicol. 20, 721–723 (2007)

    Article  CAS  Google Scholar 

  13. N.A. Stasko, T.H. Fischer, M.H. Schoenfisch, Biomacromolecules 9, 834–841 (2008)

    Article  CAS  Google Scholar 

  14. L. Heikal, G.P. Martin, L.A. Dailey, Nitric Oxide Biol Chem 20, 157–165 (2009)

    Article  CAS  Google Scholar 

  15. S. Aleryani, E. Milo, Y. Rose, P. Kostka, J. Biol. Chem. 273, 6041–6045 (1998)

    Article  CAS  Google Scholar 

  16. T.W. Hart, Tetrahedron Lett. 26, 2013–2016 (1985)

    Article  CAS  Google Scholar 

  17. J.M.C. Gutteridge, FEBS Lett. 128, 343–346 (1981)

    Article  CAS  Google Scholar 

  18. S.N. Guha, P.N. Moorthy, K. Kishore, D.B. Naik, K.N. Rao, Proc. Indian Acad. Sci. Chem. Sci. 99, 261–271 (1987)

    CAS  Google Scholar 

  19. J.M. Joseph, T.L. Luke, U.K. Aravind, C.T. Aravindakumar, Water Environ. Res. 73, 243–247 (2001)

    Article  CAS  Google Scholar 

  20. B.S. Wolfenden, R.L. Willson, J. Chem. Soc. Perkin Trans. 2, 805–812 (1982)

    Google Scholar 

  21. T.E. Eriksen, G. Fransson, J. Chem. Soc. Perkin Trans. 2, 1117–1122 (1988)

    Google Scholar 

  22. L.S. Harmon, D.K. Carver, J. Schreiber, R.P. Mason, J. Biol. Chem. 261, 1642–1648 (1986)

    Google Scholar 

  23. S. Goldstein, G. Czapski, Free Rad. Biol. Med. 19, 505–510 (1995)

    Article  CAS  Google Scholar 

  24. A. Treinin, E. Hayon, J. Am. Chem. Soc. 92, 5821–5828 (1970)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

V. M. Manoj is thankful to CSIR, New Delhi, for the Senior Research Fellowship. The financial support for this study is from the Board of Research in Nuclear Sciences (BRNS), Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charuvila T. Aravindakumar.

Additional information

Hari Mohan was formerly associated with Bhabha Atomic Research Centre, Mumbai (1967–2004) and passed away on February 13, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manoj, V.M., Aravind, U.K., Mohan, H. et al. Reaction of hydroxyl radicals with S-nitrosothiols: Formation of thiyl radical (RS) as the intermediate. Res Chem Intermed 37, 1113–1122 (2011). https://doi.org/10.1007/s11164-011-0332-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-011-0332-9

Keywords

Navigation