Skip to main content
Log in

Innovating transcriptomics for practitioners in freshwater fish management and conservation: best practices across diverse resource-sector users

  • Reviews
  • Published:
Reviews in Fish Biology and Fisheries Aims and scope Submit manuscript

Abstract

Thriving freshwater fish populations contribute to people’s economic prosperity and wellbeing. Yet, freshwater fish populations are in critical condition around the globe. Most stressors to freshwater fishes, fisheries, and culture stem from habitat impacts, water-quality issues, and aquatic invasive species. Logistical difficulties of monitoring fish health are compounded by the limitations of conventional (capture-based) sampling methods, which provide only a temporal “snapshot” and generate data lacking in sensitivity and prognostic ability. Here, we propose an innovative genomics approach to develop a health toolkit that will allow resource-sector users to determine the health status of freshwater fishes, including their coping capacity, to environmental stressors. The stress-response transcription profile (STP)-chip is a suite of quantitative gene transcription assays that represents key gene pathways broadly associated with fish functional responses to environmental stress; therefore, the differential expression of well-selected genes can provide sensitive fish-health status indicators. Despite the scientific achievement of using genomics tools, actualizing the toolkit in practice is only successful if resource-sector users have full buy-in. We present seven case studies representing different practitioners and resource users – Indigenous rightsholders, environmental consultants (industry), commercial aquaculture, environmental charities (ENGO), and fishery commissions and managers (government) where each explores the benefits and risks associated with the adoption of a genomics fish-health toolkit. Using a co-production approach, wherein practitioners and resource users are engaged from the outset, these case studies reveal translational pathways that would be needed to overcome barriers to technological adoption and, hence, accelerate the responsible uptake of genomics-based applications in fisheries assessment, management, and conservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adams SM, Ham KD (2011) Application of biochemical and physiological indicators for assessing recovery of fish populations in a disturbed stream. Environ Manage 47(6):1047–1063

    Article  PubMed  Google Scholar 

  • Adams SM, Brown AM, Goede RW (1993) A quantitative health assessment index for rapid evaluation of fish condition in the field. Trans Am Fish Soc 122(1):63–73

    Article  Google Scholar 

  • Akbarzadeh A, Günther OP, Houde AL, Li S, Ming TJ, Jeffries KM, Hinch SG, Miller KM (2018) Developing specific molecular biomarkers for thermal stress in salmonids. BMC Genomics 19(1):749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allan JD, Abell R, Hogan ZEB, Revenga C, Taylor BW, Welcomme RL, Winemiller K (2005) Overfishing of inland waters. Bioscience 55(12):1041–1051

    Article  Google Scholar 

  • Arthington AH, Dulvy NK, Gladstone W, Winfield IJ (2016) Fish conservation in freshwater and marine realms: status, threats and management. Aquat Conserv Mar Freshwat Ecosyst 26(5):838–857

    Article  Google Scholar 

  • Arukwe A, Goksøyr A (2003) Eggshell and egg yolk proteins in fish: hepatic proteins for the next generation: oogenetic, population, and evolutionary implications of endocrine disruption. Comp Hepatol 2(1):4

    Article  PubMed  PubMed Central  Google Scholar 

  • Bahamonde PA, Feswick A, Isaacs MA, Munkittrick KR, Martyniuk CJ (2016) Defining the role of omics in assessing ecosystem health: perspectives from the Canadian environmental monitoring program. Environ Toxicol Chem 35(1):20–35

    Article  CAS  PubMed  Google Scholar 

  • Beever EA, O’Leary J, Mengelt C, West JM, Julius S, Green N, Magness D, Petes L, Stein B, Nicotra AB, Hellmann JJ (2016) Improving conservation outcomes with a new paradigm for understanding species’ fundamental and realized adaptive capacity. Conserv Lett 9(2):131–137

    Article  Google Scholar 

  • Bernatchez L, Wellenreuther M, Araneda C, Ashton DT, Barth JMI, Beacham TD, Maes GE, Martinsohn JT, Miller KM, Naish KA, Ovenden JR, Primmer CR, Young Suk H, Therkildsen NO, Withler RE (2017) Harnessing the power of genomics to secure the future of seafood trends. Ecol Evol 32:665–680

    Article  Google Scholar 

  • Bernos T, Jeffries K, Mandrak NE (2020) Fish conservation genomics: a review of next-generation sequencing applications. Fish Fish 30:587–604

    Article  Google Scholar 

  • Billingsley LW (1981) Stocks concept international symposium. Can J Fisheries Aquat Sci 38:1457–1923

    Google Scholar 

  • Bjørndal T, Tusvik A (2019) Economic analysis of land based farming of salmon. Aquac Econ Manag 23(4):449–475

    Article  Google Scholar 

  • Brauer CJ, Unmack PJ, Beheregaray LB (2017) Comparative ecological transcriptomics and the contribution of gene expression to the evolutionary potential of a threatened fish. Mol Ecol 26:6841–6856

    Article  PubMed  Google Scholar 

  • Brosset P, Cooke SJ, Schull Q, Trenkel VM, Soudant P, Lebigre C (2021) Physiological biomarkers and fisheries management. Rev Fish Biol Fisheries 31(4):797–819

    Article  Google Scholar 

  • Calow P, Forbes VE (1998) How do physiological responses to stress translate into ecological and evolutionary processes? Comp Biochem Physiol A Mol Integr Physiol 120(1):11–16

    Article  Google Scholar 

  • Canario AV, Bargelloni L, Volckaert F, Houston RD, Massault C, Guiguen Y (2008) Genomics toolbox for farmed fish. Rev Fish Sci 16(sup1):3–15

    Article  Google Scholar 

  • Casey J, Jardim E, Martinsohn JT (2016) The role of genetics in fisheries management under the EU common fisheries policy. J Fish Biol 89(6):2755–2767

    Article  CAS  PubMed  Google Scholar 

  • Castañeda RA, Ackerman JD, Chapman LJ, Cooke SJ, Cuddington K, Dextrase AJ, Drake DAR (2021) Approaches and research needs for advancing the protection and recovery of imperilled freshwater fishes and mussels in Canada1. Can J Fish Aquat Sci 78(9):1356–1370

    Article  Google Scholar 

  • Chapman JM, Kelly LA, Teffer AK, Miller KM, Cooke SJ (2021) Disease ecology of wild fish: opportunities and challenges for linking infection metrics with behaviour, condition, and survival. Can J Fish Aquat Sci 78(8):995–1007

    Article  Google Scholar 

  • Chopin T (2015) Marine aquaculture in Canada: Well-established monocultures of finfish and shellfish and an emerging integrated multi-trophic aquaculture (IMTA) approach including seaweeds, other invertebrates, and microbial communities. Fisheries 40:28–31

    Article  Google Scholar 

  • Cline TJ, Bennington V, Kitchell JF (2013) Climate change expands the spatial extent and duration of preferred thermal habitat for Lake Superior fishes. PLoS ONE 8(4):e62279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collingsworth PD, Bunnell DB, Murray MW, Kao YC, Feiner ZS, Claramunt RM, Lofgren BM, Höök TO, Ludsin SA (2017) Climate change as a long-term stressor for the fisheries of the Laurentian Great Lakes of North America. Rev Fish Biol Fisheries 27(2):363–391

    Article  Google Scholar 

  • Connon RE, Jeffries KM, Komoroske LM, Todgham AE, Fangue NA (2018) The utility of transcriptomics in fish conservation. J Exp Biol 221(2):jeb148833

    Article  PubMed  Google Scholar 

  • Cooke SJ, Allison EH, Beard TD, Arlinghaus R, Arthington AH, Bartley DM et al (2016) On the sustainability of inland fisheries: finding a future for the forgotten. Ambio 45(7):753–764

    Article  PubMed  PubMed Central  Google Scholar 

  • Cooke SJ, Nguyen VM, Chapman JM, Reid AJ, Landsman SJ, Young N, Hinch SG, Schott S, Mandrak N, Semeniuk CAD (2020) Knowledge co-production: a pathway to effective fisheries management, conservation, and governance. Fisheries 46(2):89–97

    Article  Google Scholar 

  • Cooke SJ, Jeanson AL, Bishop I, Bryan BA, Chen C, Cvitanovic C, Young N (2021) On the theory-practice gap in the environmental realm: perspectives from and for diverse environmental professionals. Socio-Ecol Pract RES 3(3):243–255

    Article  Google Scholar 

  • Cooper GM, Brown CD (2008) Qualifying the relationship between sequence conservation and molecular function. Genome Res 18:201–205

    Article  CAS  PubMed  Google Scholar 

  • Cruz F, Brennan AC, Gonzalez-Voyer A, Muñoz-Fuentes V, Eaaswarkhanth M, Roques S, Picó FX (2012) Genetics and genomics in wildlife studies: implications for ecology, evolution, and conservation biology. BioEssays 34:245–246

    Article  PubMed  Google Scholar 

  • Davidson J, May T, Good C, Waldrop T, Kenney B, Terjesen BF, Summerfelt S (2016) Production of market-size North American strain Atlantic salmon Salmo salar in a land-based recirculation aquaculture system using freshwater. Aquacult Eng 74:1–16

    Article  Google Scholar 

  • De Groot RS, Wilson MA, Boumans RM (2002) A typology for the classification, description and valuation of ecosystem functions, goods and services. Ecol Econ 41(3):393–408

    Article  Google Scholar 

  • DeBiasse MB, Kelly MW (2016) Plastic and evolved responses to global change: what can we learn from comparative transcriptomics? J Hered 107(1):71–81

    Article  PubMed  Google Scholar 

  • DeForest DK, Adams WJ (2011) Selenium accumulation and toxicity in freshwater fishes. In: Beyer WN, Meador J (eds) Environmental contaminants in biota: interpreting tissue concentrations, 2nd edn. CRC, Boca Raton, FL, pp 193–229

    Chapter  Google Scholar 

  • DeForest DK, Brix KV, Adams WJ (1999) Critical review of proposed residue-based selenium toxicity thresholds for freshwater fish. Hum Ecol Risk Assess Int J 5(6):1187–1228

    Article  CAS  Google Scholar 

  • Desforges JE, Clarke J, Harmsen EJ, Jardine AM, Robichaud JA, Serré S, Cooke SJ (2022) The alarming state of freshwater biodiversity in Canada. Can J Fish Aquat Sci 79(2):352–365

    Article  Google Scholar 

  • Dudgeon D, Arthington AH, Gessner MO, Kawabata ZI, Knowler DJ, Lévêque C, Naiman RJ, Prieur-Richard AH, Soto D, Stiassny ML, Sullivan CA (2006) Freshwater biodiversity: importance, threats, status and conservation challenges. Biol Rev 81(2):163–182

    Article  PubMed  Google Scholar 

  • Dunlop ES, Eikeset AM, Stenseth NC (2015) From genes to populations: How fisheries-induced evolution alters stock productivity. Ecol Appl 25(7):1860–1868

    Article  PubMed  Google Scholar 

  • Dunlop ES, Feiner ZS, Höök TO (2018) Potential for fisheries-induced evolution in the Laurentian Great Lakes. J Great Lakes Res 44(4):735–747

    Article  Google Scholar 

  • Evans DO (2007) Effects of hypoxia on scope-for-activity and power capacity of lake trout (Salvelinus namaycush). Can J Fish Aquat Sci 64(2):345–361

    Article  CAS  Google Scholar 

  • Flanagan SP, Forester BR, Latch EK, Aitken SN, Hoban S (2018) Guidelines for planning genomic assessment and monitoring of locally adaptive variation to inform species conservation. Evol Appl 11(7):1035–1052

    Article  PubMed  Google Scholar 

  • Føre M, Frank K, Norton T, Svendsen E, Alfredsen JA, Dempster T, Eguiraun H, Watson W, Stahl A, Sunde LM, Schellewald C, Skøien KR, Alver MO, Berckmans D (2018) Precision fish farming: A new framework to improve production in aquaculture. Biosyst Eng 173:176–193

    Article  Google Scholar 

  • Good C, Davidson J, Welsha C, Snekvik K, Summerfelt S (2010) The effects of carbon dioxide on performance and histopathology of rainbow trout Oncorhynchus mykiss in water recirculation aquaculture systems. Aquacult Eng 42:51–56

    Article  Google Scholar 

  • Grummer JA, Beheregaray LB, Bernatchez L, Hand BK, Luikart G, Narum SR, Taylor EB (2019) Aquatic landscape genomics and environmental effects on genetic variation. Trends Ecol Evol 34(7):641–654

    Article  PubMed  Google Scholar 

  • Hale R, Piggott JJ, Swearer SE (2017) Describing and understanding behavioral responses to multiple stressors and multiple stimuli. Ecol Evol 7(1):38–47

    Article  PubMed  Google Scholar 

  • Hamdoun A, Epel D (2007) Embryo stability and vulnerability in an always changing world. Proc Natl Acad Sci USA 104:1745–1750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamilton SJ (2004) Review of selenium toxicity in the aquatic food chain. Sci Total Environ 326(1–3):1–31

    CAS  PubMed  Google Scholar 

  • Hare JA, Morrison WE, Nelson MW, Stachura MM, Teeters EJ, Griffis RB, Alexander MA, Scott JD, Alade L, Bell RJ, Chute AS (2016) A vulnerability assessment of fish and invertebrates to climate change on the Northeast US Continental Shelf. PLoS ONE 11(2):e0146756

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Harrison I, Abell R, Darwall W, Thieme ML, Tickner D, Timboe I (2018) The freshwater biodiversity crisis. Science 362(6421):1369–1369

    Article  PubMed  Google Scholar 

  • He X, Wilson CC, Wellband KW, Houde ALS, Neff BD, Heath DD (2015) Transcriptional profiling of two Atlantic salmon strains: implications for reintroduction into Lake Ontario. Conserv Genet 16(2):277–287

    Article  CAS  Google Scholar 

  • He X, Johansson ML, Heath DD (2016) Role of genomics and transcriptomics in selection of reintroduction source populations. Conserv Biol 30(5):1010–1018

    Article  PubMed  Google Scholar 

  • Hook SE (2010) Promise and progress in environmental genomics: a status report on the applications of gene expression-based microarray studies in ecologically relevant fish species. J Fish Biol 77(9):1999–2022

    Article  CAS  PubMed  Google Scholar 

  • Houde ALS, Garner SR, Neff BD (2015) Restoring species through reintroductions: strategies for source population selection. Restor Ecol 23(6):746–753

    Article  Google Scholar 

  • Houde ALS, Akbarzadeh A, Günther OP, Li S, Patterson DA, Farrell AP, Hinch SG, Miller KM (2019) Salmonid gene expression biomarkers indicative of physiological responses to changes in salinity and temperature, but not dissolved oxygen. J Exp Biol 222(13):jep198036

    Article  Google Scholar 

  • Huang IB, Keisler J, Linkov I (2011) Multi-criteria decision analysis in environmental sciences: ten years of applications and trends. Sci Total eEnviron 409(19):3578–3594

    Article  CAS  Google Scholar 

  • Hughes RM, Kaufmann PR, Herlihy AT, Kincaid TM, Reynolds L, Larsen DP (1998) A process for developing and evaluating indices of fish assemblage integrity. Can J Fish Aquat Sci 55(7):1618–1631

    Article  Google Scholar 

  • Iverson SJ, Fisk AT, Hinch SG, Mills Flemming J, Cooke SJ, Whoriskey FG (2019) The oceantracking network: advancing frontiers in aquatic science and management. Can J Fish Aquat Sci 76(7):1041–1051

    Article  Google Scholar 

  • Jeffrey JD, Hasler CT, Chapman JM, Cooke SJ, Suski CD (2015) Linking landscape-scale disturbances to stress and condition of fish: implications for restoration and conservation. Integr Comp Biol 55(4):618–630

    Article  PubMed  Google Scholar 

  • Jeffries KM, Hinch SG, Gale MK, Clark TD, Lotto AG, Casselman MT, Li S, Rechisky EL, Porter AD, Welch DW, Miller KM (2014) Immune response genes and pathogen presence predict migration survival in wild salmon smolts. Mol Ecol 23(23):5803–5815

    Article  CAS  PubMed  Google Scholar 

  • Jeffries KM, Teffer A, Michaleski S, Bernier NJ, Heath DD, Miller KM (2021) The use of non-lethal sampling for transcriptomics to assess the physiological status of wild fishes. Comp Biochem Physiol B Biochem Mol Biol 256:110629

    Article  CAS  PubMed  Google Scholar 

  • Jerde CL (2021) Can we manage fisheries with the inherent uncertainty from eDNA? J Fish Biol 98(2):341–353

    Article  PubMed  Google Scholar 

  • Kadykalo AN, Cooke SJ, Young N (2020) Conservation genomics from a practitioner lens: evaluating the research-implementation gap in a managed freshwater fishery. Biol Cons 241:108350

    Article  Google Scholar 

  • Khan KU, Zuberi A, Fernandes JBK, Ullah I, Sarwar H (2017) An overview of the ongoing insights in selenium research and its role in fish nutrition and fish health. Fish Physiol Biochem 43(6):1689–1705

    Article  CAS  PubMed  Google Scholar 

  • Kime DE (1998) Endocrine disruption in fish. Kluwer Academic Publishers, Norwell (MA, USA)

    Book  Google Scholar 

  • Kroll KJ, Doroshov SI (1991) Vitellogenin: potential vehicle for selenium in oocytes of the white sturgeon (Acipenser transmontanus). In: Williot P (ed) Acipenser. Cemagref Publishers, Montpellier (France), pp 99–106

    Google Scholar 

  • Kültz D, Clayton DF, Robinson GE, Albertson C, Carey HV, Cummings ME, Dewar K, Edwards SV, Hofmann HA, Gross LJ, Kingsolver JG (2013) New frontiers for organismal biology. Bioscience 63(6):464–471

    Article  Google Scholar 

  • Lacaze É, Gendron AD, Miller JL, Colson TLL, Sherry JP, Giraudo M, Houde M (2019) Cumulative effects of municipal effluent and parasite infection in yellow perch: a field study using high-throughput RNA-sequencing. Sci Total Environ 665:797–809

    Article  CAS  PubMed  Google Scholar 

  • Larson WA, Kornis MS, Turnquist KN, Bronte CR, Holey ME, Hanson SD, Treska TJ, Stott W, Sloss BL (2021) The genetic composition of wild recruits in a recovering lake trout population in Lake Michigan is influenced by capture location and stocking history. Can J Fisheries Aquat Sci 78(3):286–300

    Article  CAS  Google Scholar 

  • Leese F, Altermatt F, Bouchez A, Ekrem T, Hering D, Meissner K, Zimmermann J (2016) DNAqua-Net: developing new genetic tools for bioassessment and monitoring of aquatic ecosystems in Europe. Res Ideas Outcomes (RIO) 2:e11321

    Article  Google Scholar 

  • Lemly AD, Skorupa JP (2007) Technical issues affecting the implementation of US Environmental Protection Agency’s proposed fish tissue-based aquatic criterion for selenium. Integr Environ Assess Manage Int J 3(4):552–558

    Article  CAS  Google Scholar 

  • Li T, Fooks JR, Messer KD, Ferraro PJ (2021) A field experiment to estimate the effects of anchoring and framing on residents’ willingness to purchase water runoff management technologies. Resour Energy Econ 63:101107

    Article  Google Scholar 

  • Logan CA, Buckley BA (2015) Transcriptomic responses to environmental temperature in eurythermal and stenothermal fishes. J Exp Biol 218(12):1915–1924

    Article  PubMed  Google Scholar 

  • López-Maury L, Marguerat S, Bähler J (2008) Tuning gene expression to changing environments: from rapid responses to evolutionary adaptation. Nat Rev Genet 9(8):583–593

    Article  PubMed  CAS  Google Scholar 

  • Mas-Colell A, Whinston MD, Green JR (1995) Microeconomic theory, vol 1. Oxford University Press, New York

    Google Scholar 

  • McDonald BG, Chapman PM (2009) The need for adequate QA/QC measures for selenium larval deformity assessments: implications for tissue residue guidelines. Integr Environ Assess Manag 5(3):470–475

    Article  CAS  PubMed  Google Scholar 

  • Miller KM, Li S, Kaukinen KH, Ginther N, Hammill E, Curtis JMR, Patterson DA, Sierocinski T, Donnidon L, Pavlidis P, Hinch SG, Hruska KA, Cooke SJ, English KK, Farrell AP (2011) Genomic signatures predict migration and spawning failure in wild Canadian salmon. Science 331:214–217

    Article  CAS  PubMed  Google Scholar 

  • Miller KM, Teffer A, Tucker S, Li S, Schulze AD, Trudel M, Juanes F, Tabata A, Kaukinen KH, Ginther NG, Ming TJ (2014) Infectious disease, shifting climates, and opportunistic predators: cumulative factors potentially impacting wild salmon declines. Evol Appl 7(7):812–855

    Article  PubMed  PubMed Central  Google Scholar 

  • Moreira M, Schrama D, Farinha AP, Cerqueira M, Raposo de Magalhães C, Carrilho R, Rodrigues P (2021) Fish pathology research and diagnosis in aquaculture of farmed fish; a proteomics perspective. Animals 11(1):125

    Article  PubMed Central  Google Scholar 

  • Moura MT, Silva RL, Nascimento PS, Ferreira-Silva JC, Cantanhêde LF, Kido EA, Benko-Iseppon AM, Oliveira MA (2019) Inter-genus gene expression analysis in livestock fibroblasts using reference gene validation based upon a multi-species primer set. PLoS ONE 14(8):e0221170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muir AM, Krueger CC, Hansen MJ (2012) Re-establishing lake trout in the Laurentian Great Lakes: past, present, and future. In: Taylor WW, Lynch AJ, Leonard NJ (eds) Great Lakes fisheries policy and management: a binational perspective, 2nd edn. Michigan State University Press, East Lansing, pp 533–588

    Google Scholar 

  • Myers BJ, Lynch AJ, Bunnell DB, Chu C, Falke JA, Kovach RP et al (2017) Global synthesis of the documented and projected effects of climate change on inland fishes. Rev Fish Biol Fisheries 27(2):339–361

    Article  Google Scholar 

  • Nguyen VM, Delle Palme C, Pentz B, Vandergoot CS, Krueger CC, Young N, Cooke SJ (2021) Overcoming barriers to transfer of scientific knowledge: integrating biotelemetry into fisheries management in the Laurentian Great Lakes. Socio-Ecol Pract Res 3(1):17–36

    Article  Google Scholar 

  • O’Brien AL, Dafforn KA, Chariton AA, Johnston EL, Mayer-Pinto M (2019) After decades of stressor research in urban estuarine ecosystems the focus is still on single stressors: a systematic literature review and meta-analysis. Sci Total Environ 684:753–764

    Article  CAS  PubMed  Google Scholar 

  • Oomen RA, Hutchings JA (2017) Transcriptomic responses to environmental change in fishes: insights from RNA sequencing. Facets 2(2):610–641

    Article  Google Scholar 

  • Pacitti D, Lawan MM, Feldmann J, Sweetman J, Wang T, Martin SAM, Secombes CJ (2016) Impact of selenium supplementation on fish antiviral responses: a whole transcriptomic analysis in rainbow trout (Oncorhynchus mykiss) fed supranutritional levels of Sel-Plex®. BMC Genomics 17(1):116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paquet PJ, Flagg T, Appleby A, Barr J, Blankenship L, Campton D, Delarm M, Evelyn T, Fast D, Gislason J, Kline P (2011) Hatcheries, conservation, and sustainable fisheries—achieving multiple goals: results of the Hatchery Scientific Review Group’s Columbia River basin review. Fisheries 36(11):547–561

    Article  Google Scholar 

  • Post JR, Sullivan M, Cox S, Lester NP, Walters CJ, Parkinson EA et al (2002) Canada’s recreational fisheries: the invisible collapse? Fisheries 27(1):6–17

    Article  Google Scholar 

  • Qian X, Ba Y, Zhuang Q, Zhong G (2014) RNA-Seq technology and its application in fish transcriptomics. Omics J Integr Biol 18(2):98–110

    Article  CAS  Google Scholar 

  • Reid AJ, Carlson AK, Creed IF, Eliason EJ, Gell PA, Johnson PT et al (2019) Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol Rev 94(3):849–873

    Article  PubMed  Google Scholar 

  • Reid AJ, Eckert LE, Lane JF, Young N, Hinch SG, Darimont CT, Marshall A (2021) “Two-eyed seeing”: an indigenous framework to transform fisheries research and management. Fish Fish 22(2):243–261

    Article  Google Scholar 

  • Rice J, Bradford MJ, Clarke KD, Koops MA, Randall RG, Wysocki R (2015) The science framework for implementing the fisheries protection provisions of Canada’s fisheries Act. Fisheries 40(6):268–275

    Article  Google Scholar 

  • Rogers EM (1962) Diffusion of innovations. Free Press, New York

    Google Scholar 

  • Saltelli A, Dankel DJ, Di Fiore M, Holland N, Pigeon M (2022) Science, the endless frontier of regulatory capture. Futures 135:102860

    Article  Google Scholar 

  • Schneider L, Maher WA, Potts J, Taylor AM, Batley GE, Krikowa F, Gruber B (2015) Modeling food web structure and selenium biomagnification in lake macquarie, New South Wales, Australia, using stable carbon and nitrogen isotopes. Environ Toxicol Chem 34(3):608–617

    Article  CAS  PubMed  Google Scholar 

  • Schulte PM (2004) Changes in gene expression as biochemical adaptations to environmental change: a tribute to Peter Hochachka. Comp Biochem Physiol B Biochem Mol Biol 139(3):519–529

    Article  PubMed  CAS  Google Scholar 

  • Schwartz TS (2020) The promises and the challenges of integrating multi-omics and systems biology in comparative stress biology. Integr Comp Biol 60(1):89–97

    Article  CAS  PubMed  Google Scholar 

  • Scribner K, Tsehaye I, Brenden T, Stott W, Kanefsky J, Bence J (2018) Hatchery strain contributions to emerging wild lake trout populations in Lake Huron. J Hered 109(6):675–688

    Article  PubMed  Google Scholar 

  • Seaborn T, Griffith D, Kliskey A, Caudill CC (2021) Building a bridge between adaptive capacity and adaptive potential to understand responses to environmental change. Glob Change Biol 27(12):2656–2668

    Article  Google Scholar 

  • Shahraki AH, Heath D, Chaganti SR (2019) Recreational water monitoring: Nanofluidic qRT-PCR chip for assessing beach water safety. Environ DNA 1(4):305–315

    Article  Google Scholar 

  • Siefkes MJ, Steeves TB, Sullivan WP, Twohey MB, Li W (2013) Sea lamprey control: past, present, and future. Great Lakes Fisheries Policy and Management. Michigan State University Press, East Lansing, pp 651–704

    Google Scholar 

  • Sisk TD, Launer AE, Switky KR, Ehrlich PR (1994) Identifying extinction threats: global analyses of the distribution of biodiversity and the expansion of the human enterprise. Bioscience 44:592–604

    Article  Google Scholar 

  • Sopinka NM, Donaldson MR, O’Connor CM, Suski CD, Cooke SJ (2016) Stress indicators in fish. Fish physiology, vol 35. Academic Press, Cambridge, pp 405–462

    Google Scholar 

  • Streletskaya NA, Bell SD, Kecinski M, Li T, Banerjee S, Palm-Forster LH, Pannell D (2020) Agricultural adoption and behavioral economics: Bridging the gap. Appl Econ Perspect Policy 42(1):54–66

    Article  Google Scholar 

  • Su G, Logez M, Xu J, Tao S, Villéger S, Brosse S (2021) Human impacts on global freshwater fish biodiversity. Science 371(6531):835–838

    Article  CAS  PubMed  Google Scholar 

  • Swirplies F, Wuertz S, Baßmann B, Orban A, Schäfer N, Brunner RM, Hadlich F, Goldammer T, Rebl A (2019) Identification of molecular stress indicators in pikeperch Sander lucioperca correlating with rising water temperatures. Aquaculture 501:260–271

    Article  CAS  Google Scholar 

  • Todd EV, Black MA, Gemmell NJ (2016) The power and promise of RNA-seq in ecology and evolution. Mol Ecol 25:1224–1241

    Article  CAS  PubMed  Google Scholar 

  • Toews SD, Wellband KW, Dixon B, Heath DD (2019) Variation in juvenile Chinook salmon (Oncorhynchus tshawytscha) transcription profiles among and within eight population crosses from British Columbia, Canada. Mol Ecol 28:1890–1903

    Article  CAS  PubMed  Google Scholar 

  • Veldhoen N, Ikonomou MG, Helbing CC (2012) Molecular profiling of marine fauna: integration of omics with environmental assessment of the world’s oceans. Ecotoxicol Environ Saf 76:23–38

    Article  CAS  PubMed  Google Scholar 

  • Veldhoen N, Beckerton JE, Mackenzie-Grieve J, Stevenson MR, Truelson RL, Helbing CC (2014) Development of a non-lethal method for evaluating transcriptomic endpoints in Arctic grayling (Thymallus arcticus). Ecotoxicol Environ Saf 105:43–50

    Article  CAS  PubMed  Google Scholar 

  • Viatori M (2019) Uncertain risks: Salmon science, harm, and ignorance in Canada. Am Anthropol 121(2):325–337

    Article  Google Scholar 

  • Wellband KW, Heath JW, Heath DD (2018) Environmental and genetic determinants of transcriptional plasticity in Chinook salmon. Heredity 120(1):38

    Article  CAS  PubMed  Google Scholar 

  • Whitehead A, Crawford DL (2006) Neutral and adaptive variation in gene expression. Proc Natl Acad Sci 103(14):5425–5430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams SE, Shoo LP, Isaac JL, Hoffmann AA, Langham G (2008) Towards an integrated framework for assessing the vulnerability of species to climate change. PLoS Biol 6(12):e325

    Article  PubMed Central  CAS  Google Scholar 

  • Yin X, Martinez AS, Perkins A, Sparks MM, Harder AM, Willoughby JR, Sepúlveda MS, Christie MR (2021) Incipient resistance to an effective pesticide results from genetic adaptation and the canalization of gene expression. Evol Appl 14:847–859

    Article  CAS  PubMed  Google Scholar 

  • Adamus PR (2001) Indicators for monitoring biological integrity of inland, freshwater wetlands: a survey of North American technical literature (1990–2000)

  • DFO. (2007) Revised Protocol protocol for conducting recovery potential assessments. DFO Can. Sci. Advis. Sec. Sci. Advis. Rep. 2007/039.

  • DFO (2019) Recovery Potential Assessment – River Darter, Percina shumardi (Great Lakes-Upper St. Lawrence populations). DFO Canadian Science Advisory Secretariat Science Advisory Report 2019/051

  • DFO (2017) Recovery Potential Assessment of Bull Trout, Salvelinus confluentus (Saskatchewan–Nelson rivers populations). DFO Canadian Science Advisory Secretariat Science Advisory Report 2016/050

  • DFO (2010a) Recovery potential assessment of Lake Sturgeon: Assiniboine-Red Rivers – Lake Winnipeg populations (Designatable Unit 4). DFO Canadian Science Advisory Secretariat Science Advisory Report 2010a/051

  • DFO (2010b) Recovery potential assessment of Lake Sturgeon: Winnipeg River-English River populations (Designatable Unit 5). DFO Canadian Science Advisory Secretariat Science Advisory Report 2010b/052

  • Eshenroder RL, Krueger CC (2002) Reintroduction of native fishes to the Great Lakes proper: a research theme area. Great Lakes Fishery Commission Board of Technical Experts. Ann Arbor, Michigan. http://www.glfc.org/research/Nativefish.html

  • Genome Canada (2019) “Environmental DNA ("eDNA"), meta-barcoding and transcriptional profiling to improve sustainability of freshwater fisheries and fish culture.” https://www.genomecanada.ca/en/environmental-dna-edna-meta-barcoding-and-transcriptional-profiling-improve-sustainability Accessed December 16, 2021.

  • GLFC (1981) A joint strategic plan for management of Great Lakes fisheries. Great Lakes Fisheries Commission, Ann Arbor, Michigan

  • Healey MC (1991) Life history of chinook salmon (Oncorhynchus tshawytscha). Pacific salmon life histories, pp 311–394

  • Ives JT, McMeans BC, McCann KT, Fisk AT, Johnson TB, Bunnell DB, Frank KT, Muir AM (2018) Food-web structure and ecosystem function in the Laurentian Great Lakes – Toward a conceptual model. Freshwater Biol, pp 1–23

  • Janz DM, DeForest DK, Brooks ML, Chapman PM, Gilron G, Hoff D, Hopkins WA, McIntyre DO, Mebane CA, Palace VP, Skorupa JP, Wayland M (2010) Selenium toxicity to aquatic organisms. Pages 139–230 in Chapman PM, Adams WJ, Brooks ML, Delos CG, Luoma SN, Maher WA, Ohlendorf HM, Presser TS, Shaw DP (eds) Selenium toxicity to aquatic organisms. Ecological assessment of selenium in the aquatic environment, pp 141–231

  • Jeffrey JD, Carlson H, Wrubleski D, Enders EC, Treberg JR, Jeffries KM (2020) Applying a gene-suite approach to examine the physiological status of wild-caught walleye (Sander vitreus). https://doi.org/10.1101/2020.02.29.971374

  • Krol E, Noguera P, Shaw S, Costelloe E, Gajardo K, Valdenegro V, Bickerdike R, Douglas A, Martin SAM (2020) Integration of transcriptome, gross morphology and histopathology in the gill of sea farmed atlantic salmon (Salmo salar): lessons from multi-site sampling. Front Genet 11(610)

  • Millar PH (2013) Canadian fisheries and aquaculture: how genomics can address sectoral challenges. Genome Canada, Genome Atlantic and Genome British Columbia, p 24. https://www.genomecanada.ca/sites/default/files/pdf/en/Fisheries_and_Aquaculture_EN.pdf

  • Ohlendorf H, Covington S, Byron E, Arenal C (2008) Approach for conducting site-specific assessments of selenium bioaccumulation in aquatic systems. Prepared for the North America Metals Council—Selenium Working Group, Washington, DC Prepared by CH2M HILL and NewFields. December

  • Stanford BC, Rogers SM (2018) R (NA)‐tistic expression: the art of matching unknown mRNA and proteins to environmental response in ecological genomics

Download references

Acknowledgements

We acknowledge the many traditional and unceded territories and lands of Indigenous Peoples our Universities and partner organizations are situated on. We further acknowledge the rights and privileges of the founding peoples – First Nations and Métis peoples on land we call Turtle Island. GEN-FISH is primarily administered by the University of Windsor which sits on the traditional territory of the Three Fires Confederacy of First Nations, which includes the Ojibwa, the Odawa, and the Potawatomie. The manuscript figure was designed by Chloë Schmidt. We are immensely grateful to our partners who are willing to go with us on this journey to improve our fisheries and shared future. This paper is dedicated in memoriam to Sara K. Jamieson, without whom the success of GEN-FISH would never have been realized. An indefatigable advocate, her brilliant ideas live on.

Funding

The research described in this paper (i.e., STP-chip) is supported by Genome Canada (i.e., GEN-FISH – Genomic network for fish identification, stress and health; OGI-184)), and the Natural Sciences and Engineering Research Council of Canada (06768 to C.A.D. Semeniuk). Additional support was provided by Genome Ontario, Genome Québec and Genome Prairie.

Author information

Authors and Affiliations

Authors

Contributions

Authors CADS and DDH were responsible for conceptualization of the review. All authors contributed to manuscript writing, and commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to C. A. D. Semeniuk.

Ethics declarations

Conflict of interest

All authors are affiliated with GEN-FISH in various ways.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 209 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semeniuk, C.A.D., Jeffries, K.M., Li, T. et al. Innovating transcriptomics for practitioners in freshwater fish management and conservation: best practices across diverse resource-sector users. Rev Fish Biol Fisheries 32, 921–939 (2022). https://doi.org/10.1007/s11160-022-09715-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11160-022-09715-w

Keywords

Navigation