Skip to main content

Advertisement

Log in

The effect of bottom trawling time on mortality, physical damage and oxidative stress in two Sciaenidae species

  • Original Research
  • Published:
Reviews in Fish Biology and Fisheries Aims and scope Submit manuscript

Abstract

Demersal shrimp trawling is among the least selective fishing methods, posing a considerable threat to marine ecosystems due to the catch of nontarget species (bycatch). Even when bycatch is immediately released, physical damage to organisms may reduce their survival. The probability of long-term survival and oxidative stress markers of two species of Sciaenidae fish, Paralonchurus brasiliensis and Stellifer rastrifer, caught incidentally while trawling for shrimp in the State of Paraná—Brazil, were analyzed. The mortality rate for both species was found to be high (P. brasiliensis, 76.94%, n = 337 and S. rastrifer, 69.32%, n = 2.586). Among other factors, mortality was associated with body size and the physical damage suffered. Smaller fish showed a higher incidence of damage, most commonly scale-loss and contusions or haematomas on the head and body. The mortality rate and catch damage index (CDI) were similar for both species, but were aggravated by higher tow durations (15, 30, and 45 min). The CDI can be a good predictor of mortality. The probability of survival improved in winter for both species. Increased lipid peroxidation and protein carbonylation were identified in P. brasiliensis but not in S. rastrifer. This indicates that the two species responded in different ways to the stressful conditions produced by trawling. Considering the oxidative stress markers identified, it appears that the high mortality rate recorded in two species was more closely associated with physical damage than oxidative stress markers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Alcântara AV (1989) Ecologia da ictiofauna do estuário do rio Sergipe

  • Benoît HP, Hurlbut T, Chassé J (2010) Assessing the factors influencing discard mortality of demersal fishes using a semi-quantitative indicator of survival potential. Fish Res 106:436–447. https://doi.org/10.1016/j.fishres.2010.09.018

    Article  Google Scholar 

  • Berghahn R, Waltemath M, Rijnsdorp AD (1992) Mortality of fish from the by-catch of shrimp vessels in the North Sea. J Appl Ichthyol 8:293–306. https://doi.org/10.1111/j.1439-0426.1992.tb00696.x

    Article  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  CAS  Google Scholar 

  • Branco JO (2005) Biologia e pesca do camarão sete-barbas Xiphopenaeus kroyeri (Heller) (Crustacea, Penaeidae), na Armação do Itapocoroy, Penha, Santa Catarina, Brasil. Rev Bras Zool 22:1050–1062. https://doi.org/10.1590/S0101-81752005000400034

    Article  Google Scholar 

  • Branco JO, Verani JR (2006) Análise quali-quantitativa da ictiofauna acompanhante na pesca do camarão sete-barbas, na Armação do Itapocoroy, Penha, Santa Catarina. Rev Bras Zool 23:381–391. https://doi.org/10.1590/S0101-81752006000200011

    Article  Google Scholar 

  • Cabral HN, Teixeira CM, Gamito R, José Costa M (2002) Importance of discards of a beam trawl fishery as input of organic matter into nursery areas within the Tagus estuary. Hydrobiologia 475(476):449–455. https://doi.org/10.1023/A:1020359913694

    Article  Google Scholar 

  • Campbell MD, Patino R, Tolan J et al (2009) Sublethal effects of catch-and-release fishing: measuring capture stress, fish impairment, and predation risk using a condition index. ICES J Mar Sci 67:513–521. https://doi.org/10.1093/icesjms/fsp255

    Article  Google Scholar 

  • Cattani AP, de Oliveira Santos L, Spach HL et al (2011) Avaliação da ictiofauna da fauna acompanhante da pesca do camarão sete- barbas do município de pontal do paraná, litoral do Brazil. Bol do Inst Pesca 37:157–161

    Google Scholar 

  • Coelho JAP, Graça Lopes R, Rodrigues ES, Puzzi A (1985) Relação peso-comprimento e tamanho de início de primeira maturação gonadal para o Sciaenidae Stellifer rastrifer (Jordan, 1889), no litoral do estado de São Paulo. Bol Do Inst Pesca 12:99–107

    Google Scholar 

  • Cooke SJ, Suski CD (2004) Are circle hooks an effective tool for conserving marine and freshwater recreational catch-and-release fisheries? Aquat Conserv Mar Freshw Ecosyst 14:299–326. https://doi.org/10.1002/aqc.614

    Article  Google Scholar 

  • Cooper RU, Clough LM, Farwell MA, West TL (2002) Hypoxia-induced metabolic and antioxidant enzymatic activities in the estuarine fish Leiostomus xanthurus. J Exp Mar Bio Ecol 279:1–20. https://doi.org/10.1016/S0022-0981(02)00329-5

    Article  CAS  Google Scholar 

  • Copatti CE, Bolner KCS, Londero ÉP et al (2019) Low dissolved oxygen levels increase stress in piava (Megaleporinus obtusidens): iono-regulatory, metabolic and oxidative responses. An Acad Bras Cienc 91:1–9. https://doi.org/10.1590/0001-3765201920180395

    Article  CAS  Google Scholar 

  • D’incao F, Valentini H, Rodrigues LF (2002) Avaliação da pesca de camarões nas regiões Sudeste e Sul do Brasil. 1965-1999. Atlântica, Rio Gd vol 24, pp 103–116

  • da Graça Lopes R, Tomás ARG, dos Santos Tutui SL et al (2002) Fauna acompanhante da pesca camaroeira no litoral do estado de São Paulo, Brasil. Bol do Inst Pesca, São Paulo 28:173–188

    Google Scholar 

  • Davis MW (2002) Key principles for understanding fish bycatch discard mortality. Can J Fish Aquat Sci 59:1834–1843. https://doi.org/10.1139/f02-139

    Article  Google Scholar 

  • Davis MW (2010) Fish stress and mortality can be predicted using reflex impairment. Fish Fish 11:1–11. https://doi.org/10.1111/j.1467-2979.2009.00331.x

    Article  Google Scholar 

  • Depestele J, Desender M, Benoît HP et al (2014) Short-term survival of discarded target fish and non-target invertebrate species in the “eurocutter” beam trawl fishery of the southern North Sea. Fish Res 154:82–92. https://doi.org/10.1016/j.fishres.2014.01.018

    Article  Google Scholar 

  • Dunn PK, Smyth GK (2018) Generalized linear models with examples in R, 1st edn. Springer, New York, NY

    Google Scholar 

  • Esaiassen M, Akse L, Joensen S (2013) Development of a Catch-damage-index to assess the quality of cod at landing. Food Control 29:231–235. https://doi.org/10.1016/j.foodcont.2012.05.065

    Article  Google Scholar 

  • FAO (1994) A global assessment of fisheries bycatch and discards. Food and Agriculture Organization of the United Nations, Rome

  • Gamito R, Cabral H (2003) Mortality of brown-shrimp discards from the beam trawl fishery in the Tagus estuary, Portugal. Fish Res 63:423–427. https://doi.org/10.1016/S0165-7836(03)00108-5

    Article  Google Scholar 

  • Gomes ID, de Tarso Chaves P (2006) Ictiofauna integrante da pesca de arrasto camaroeiro no litoral sul de estado do Paraná, Brasil. Bioikos, Campinas vol 20, pp 9–13

  • Haimovici M, Mendonça JT (1996) Análise da pesca de peixes e camarões com arrasto de tangones no sul do Brasil–Período 1989-1994. Atlântica, Rio Gd vol 18, pp 143–160

  • Halliwell B, Gutteridge JMC (2007) Free radicals in biology and medicine. Oxford University Press, Oxford, London

    Google Scholar 

  • Haluch CF, Abilhoa V, Freitas MO et al (2011) Estrutura populacional e biologia reprodutiva de Menticirrhus americanus (Linnaeus, 1758) (Teleostei, Sciaenidae) na baía de Ubatuba-Enseada, Santa Catarina, Brasil. Biotemas 24:47–59. https://doi.org/10.5007/2175-7925.2011v24n1p47

    Article  Google Scholar 

  • Heise K (2005) Interaction of oxygen supply, oxidative stress, and molecular defence systems during temperature stress in fishes

  • Hermes-Lima M (2004) Oxigênio em Biologia e Bioquímica: Papel dos Radicais Livres. In: Storey KB (ed) Functional metabolism: regulation and adaptation. John Wiley & Sons Inc, Hoboken, pp 319–368

    Google Scholar 

  • Ingolfsson O, Soldal AV, Huse I (2002) Mortality and injuries of haddock, cod and saithe escaping through codend meshes and sorting grids. Int Counc Explor Sea 32:1–22

    Google Scholar 

  • Ishibashi Y, Ekawa H, Hirata H, Kumai H (2002) Stress response and energy metabolism in various tissues of Nile tilapia Oreochromis niloticus exposed to hypoxic conditions. Fish Sci 68:1374–1383. https://doi.org/10.1046/j.1444-2906.2002.00577.x

    Article  CAS  Google Scholar 

  • Johannsson OE, Giacomin M, Sadauskas-Henrique H et al (2018) Does hypoxia or different rates of re-oxygenation after hypoxia induce an oxidative stress response in Cyphocharax abramoides (Kner 1858), a Characid fish of the Rio Negro? Comp Biochem Physiol Part A 224:53–67. https://doi.org/10.1016/j.cbpa.2018.05.019

    Article  CAS  Google Scholar 

  • Júnior JJB, Filho JLR, Branco JO, Verani JR (2011) Spatiotemporal variations of the ichthyofaunal structure accompanying the seabob shrimp, Xiphopenaeus kroyeri (Crustacea: Penaeidae), fishery in important fishery areas of the Santa Catarina shore, Brazil. Zoologia 28:151–164. https://doi.org/10.1590/S1984-46702011000200002

    Article  Google Scholar 

  • Kabacoff RI (2011) R in action: data analysis and graphics with R—bonus chapter 23, 1st edn. Manning Publication, Shelter Island

    Google Scholar 

  • Keen JH, Habig WH, Jakoby WB (1976) Mechanism for the several activities of the glutathione S-transferases. J Biol Chem 251:6183–6188

    Article  CAS  Google Scholar 

  • Larocque SM, Cooke SJ, Blouin-Demers G (2012) Mitigating bycatch of freshwater turtles in passively fished fyke nets through the use of exclusion and escape modifications. Fish Res 125–126:149–155. https://doi.org/10.1016/j.fishres.2012.02.018

    Article  Google Scholar 

  • Lenth R, Buerkner P, Herve M, et al (2019) Emmeans: estimated marginal means, aka least-squares means

  • Levine RL, Williams JA, Stadtman ER, Shacter E (1994) Carbonyl assays for determination of oxidatively modified proteins. Methods Enzymol 233:346–347. https://doi.org/10.1016/S0076-6879(94)33040-9

    Article  PubMed  CAS  Google Scholar 

  • Lim HK, Hun JW (2018) Effects of acute and chronic air exposure on growth and stress response of juvenile olive flounder, Paralichthys olivaceus. Turkish J Fish Aquat Sci 18:143–151. https://doi.org/10.4194/1303-2712-v18_1_16

    Article  Google Scholar 

  • Lushchak VI, Bagnyukova TV (2006) Effects of different environmental oxygen levels on free radical processes in fish. Comp Biochem Physiol 144:283–289. https://doi.org/10.1016/j.cbpb.2006.02.014

    Article  CAS  Google Scholar 

  • Martínez-Álvarez RM, Morales AE, Sanz A (2005) Antioxidant defenses in fish: biotic and abiotic factors. Rev Fish Biol Fish 15:75–88. https://doi.org/10.1007/s11160-005-7846-4

    Article  Google Scholar 

  • Menezes NA, Figueiredo JL (1980) Manual de peixes marinhos do sudeste do Brasil. São Paulo

  • Morfin M, Kopp D, Benoît HP, Méhault S (2019) Comparative assessment of two proxies of fish discard survival. Ecol Indic 98:310–316. https://doi.org/10.1016/j.ecolind.2018.10.060

    Article  Google Scholar 

  • Nelson DL, Cox MM (2014) Princípios de bioquímica de Lehninger, 6th edn. Artmed, Porto Alegre

    Google Scholar 

  • Neudecker T, Damm U (2010) The by-catch situation in German brown shrimp (Crangon crangon L.) fisheries with particular reference to plaice (Pleuronectes platessa L.). J Appl Ichthyol 26:67–74. https://doi.org/10.1111/j.1439-0426.2010.01447.x

    Article  Google Scholar 

  • Nguyen VM, Martins EG, Robichaud D et al (2014) Disentangling the roles of air exposure, gill net injury, and facilitated recovery on the postcapture and release mortality and behavior of adult migratory sockeye salmon (Oncorhynchus nerka) in freshwater. Physiol Biochem Zool 87:125–135. https://doi.org/10.1086/669530

    Article  PubMed  Google Scholar 

  • Pérez Roda MA, Gilman E, Huntington T, Kennelly SJ, Suuronen P, Chaloupka M, Medley PAH (2019) A third assessment of global marine fisheries discards. Fisheries and Aquaculture Technical Paper, Rome

    Google Scholar 

  • Pikitch E, Erickson D, Suuronen P et al (2002) Mortality of walleye pollock escaping from the codend and intermediate (= extension) section of a pelagic trawl ellen. In: ICES Annual Science Conference. pp 1–30

  • R Core Team (2020) A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  • Rios EP (2001) Papel do estuário no ciclo de vida das espécies dominantes da ictiofauna do complexo-lagunar de Cananéia-Iguape

  • Rudders D, Knotek RJ, Sulikowski JA, Mandleman JA (2015) Final report evaluating the condition and discard mortality of skates following capture and handling in the sea scallop dredge fishery

  • Sabinson LM (2014) Estrutura da ictiofauna e ecologia trófica de Sciaenidae acompanhante na pesca do camarão sete-barbas, no litoral de Santa Catarina

  • Sangster GI, Lehmann K, Breen M (1996) Commercial fishing experiments to assess the survival of haddock and whiting after escape from four sizes of diamond mesh cod-ends. Fish Res 25:323–345. https://doi.org/10.1016/0165-7836(95)00430-0

    Article  Google Scholar 

  • Schielzeth H (2010) Simple means to improve the interpretability of regression coefficients. Methods Ecol Evol 1:103–113. https://doi.org/10.1111/j.2041-210X.2010.00012.x

    Article  Google Scholar 

  • Schwarz-Jr R, Franco ACNP, Spach HL et al (2007) Variação da estrutura espacial da ictiofauna demersal capturada com rede de arrasto de porta na baía dos Pinheiros, PR. B Inst Pesca 33:157–169

    Google Scholar 

  • Sedlak J, Lindsay RH (1968) Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem 25:192–205. https://doi.org/10.1016/0003-2697(68)90092-4

    Article  PubMed  CAS  Google Scholar 

  • Sedrez MC, Branco JO, Freitas Júnior F et al (2013) Ictiofauna acompanhante na pesca artesanal do camarão sete-barbas (Xiphopenaeus kroyeri) no litoral sul do Brasil. Biota Neotrop 13:165–175

    Article  Google Scholar 

  • Sies H, Koch OR, Martino E, Boveris A (1979) Increased biliary glutathione disulfide release in chronically ethanol-treated rats. FEBS Lett 103:287–290. https://doi.org/10.1016/0014-5793(79)81346-0

    Article  PubMed  CAS  Google Scholar 

  • Souza UP, da Costa RC, Martins IA, Fransozo A (2008) Associações entre as biomassas de peixes Sciaenidae (Teleostei: Perciformes) e de camarões Penaeoidea (Decapoda: Dendrobranchiata) no litoral norte do Estado de São Paulo. Biota Neotrop 8:83–92

    Article  Google Scholar 

  • Suuronen P, Lehtonen E, Tschernij V, Larsson PO (1996) Skin injury and mortality of Baltic cod escaping from trawl codends equipped with exit windows. Arch Fish Mar Res 44:165–178

    Google Scholar 

  • Suuronen P, Lehtonen E, Jounela P (2005) Escape mortality of trawl caught Baltic cod (Gadus morhua)—the effect of water temperature, fish size and codend catch. Fish Res 71:151–163. https://doi.org/10.1016/j.fishres.2004.08.022

    Article  Google Scholar 

  • Tveit GM, Sistiaga M, Herrmann B, Brinkhof J (2019) External damage to trawl-caught northeast arctic cod (Gadus morhua): effect of codend design. Fish Res 214:136–147. https://doi.org/10.1016/j.fishres.2019.02.009

    Article  Google Scholar 

  • Uchiyama M, Mihara M (1978) Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal Biochem 86:271–278. https://doi.org/10.1016/0003-2697(78)90342-1

    Article  PubMed  CAS  Google Scholar 

  • Van Beek FA, Van Leeuwen PI, Rijnsdorp AD (1990) On the survival of plaice and sole discards in the otter-trawl and beam-trawl fisheries in the North Sea. Netherlands J Sea Res 26:151–160. https://doi.org/10.1016/0077-7579(90)90064-N

    Article  Google Scholar 

  • Vazzoler G (1975) Distribuição da fauna de peixes demersais e ecologia dos Sciaenidae da plataforma continental brasileira, entre as latitudes 29o21’S (Tôrres) e 33o41’S (Chuí). Bol Do Inst Ocean 24:85–169. https://doi.org/10.1590/S0373-55241975000100006

    Article  Google Scholar 

  • Veldhuizen LJL, Berentsen PBM, de Boer IJM et al (2018) Fish welfare in capture fisheries: a review of injuries and mortality. Fish Res 204:41–48. https://doi.org/10.1016/j.fishres.2018.02.001

    Article  Google Scholar 

  • Venables WN, Ripley BD (2014) Modern applied statistics with S-PLUS. Springer-Verlag, New york 

    Google Scholar 

  • Wassenberg TJ, Hill BJ (1993) Selection of the appropriate duration of experiments to measure the survival of animals discarded from trawlers. Fish Res 17:343–352. https://doi.org/10.1016/0165-7836(93)90134-S

    Article  Google Scholar 

  • Wendel A (1981) Glutathione peroxidase. Methods Enzymol 77:325–333. https://doi.org/10.1016/S0076-6879(81)77046-0

    Article  PubMed  CAS  Google Scholar 

  • Wickham H (2016) ggplot2: elegant graphics for data analysis, 2nd edn. Springer, Cham

    Book  Google Scholar 

  • Wickham H, François R, Henry L, Müller K (2019) dplyr: a grammar of data manipulation

  • Wilson SM, Raby GD, Burnett NJ, Hinch SG, Cooke SJ (2014) Looking beyond the mortality of bycatch: sublethal effects of incidental captureon marine animals. Biol Conserv 171:61–72

    Article  Google Scholar 

  • Zahorcsak P, Silvano RAM, Sazima I (2000) Feeding biology of a guild of benthivorous fishes in a sandy shore on south-eastern Brazilian coast. Rev Bras Biol 60:511–518. https://doi.org/10.1590/S0034-71082000000300016

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the National Council for the Development of Scientific and Technological Research (CNPq), the Brazilian Federal Agency for Support and Evaluation of Graduate Education (CAPES) and the Araucária Foundation for the Support of Scientific and Technological Development of the State of Paraná (FA). The study was supported by CAPES, CNPq, through the Projects CAPES Finance Code 001, CNPq 307452/2019-0, 407658/2018-1 and FA 006/2017.

Funding

This study was financed the National Council for the Development of Scientific and Technological Research (CNPq), the Brazilian Federal Agency for Support and Evaluation of Graduate Education (CAPES) the Araucária Foundation for the Support of Scientific and Technological Development of the State of Paraná (FA). The study was supported by CAPES, CNPq, through the Projects CAPES Finance Code 001, CNPq 307452/2019–0, 407658/2018–1 and FA 006/2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucélia Donatti.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

This study was approved by the Ethics Committee on Animal Experimentation of the Federal University of Paraná (UFPR under applications number 1055).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 25 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Viana, D., de Souza, M.R.D.P., de Assis Teixeira da Silva, U. et al. The effect of bottom trawling time on mortality, physical damage and oxidative stress in two Sciaenidae species. Rev Fish Biol Fisheries 31, 957–975 (2021). https://doi.org/10.1007/s11160-021-09682-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11160-021-09682-8

Keywords

Navigation